Research Article
BibTex RIS Cite

Efemçukuru Altın Yatağının Bulunduğu Seferihisar Yükselimi’nin (İzmir) Petrol ve Doğalgaz Potansiyelinin Suda Toplam Petrol Hidrokarbonları (TPH) Analizi ve Gravite-Manyetik Verilerle İncelenmesi

Year 2021, , 1 - 28, 31.08.2021
https://doi.org/10.46740/alku.799387

Abstract

Yakın tarihli çalışmalarda, hidrokarbon birikimleri ve altın cevherleşmeleri arasındaki bağlantılar incelenmiştir. Bu çalışmalardan elde edilen sonuçlara göre, altın ve hidrokarbonların aynı hidrotermal akışkanlar tarafından taşındığı ve çökeltildiği tespit edilmiştir. Seferihisar Yükselimi’nde, Türkiye’nin kanıtlanmış en büyük altın cevheri rezervine sahip Efemçukuru Altın İşletmesi bulunmaktadır. Bu gerekçe ile çalışmada, Seferihisar Yükselimi’nin petrol ve doğalgaz potansiyelinin su kaynaklarından alınan örnekler üzerinde Toplam Petrol Hidrokarbonları (TPH) analizleri yapılarak araştırılması amaçlanmıştır. Yapılan analizler sonucunda, su numunelerin tamamında hidrokarbonlar tespit edilmiştir. Sularda tespit edilen hidrokarbonların kaynağının belirlenmesi için organik jeokimyasal yöntemler kullanılmıştır. Su numunelerinde belirlenen n-alkan hidrokarbonlar, olgun petrol hidrokarbonlarıdır. Bu olgun petrol hidrokarbonları, çalışma alanında çalışan bir petrol sisteminin varlığı için jeokimyasal bir kanıttır. Olgun hidrokarbonlarca zengin suların varlığı nedeniyle, gravite ve manyetik verilerine göre çalışma alanında belirlenen maksimum 765 m derinliğindeki yapının bir petrol ve/veya doğalgaz rezervuarı olma potansiyeli oldukça yüksektir.

Supporting Institution

Marmara University

Project Number

SOS-A-100719-0267

Thanks

Bu çalışma, Marmara Üniversitesi Bilimsel Araştırma ve Geliştirme Projeleri Birimi Koordinatörlüğü tarafından finansal olarak desteklenen SOS-A-100719-0267 nolu projenin bulgularının bir kısmını içermekte olup, çalışmaya sağladığı destek için Koordinatörlüğe ve numunelerin laboratuvar analizlerini titizlikle yapan başta Sn. Serkan Çelebi olmak üzere SGS Supervise Gözetleme Etüt Kontrol Servisleri A.Ş. uzmanlarına teşekkür ederiz.

References

  • [1] Özdemir, A. and Palabiyik, Y., (2019). A shallow and reliable indicator for deep oil and gas accumulations in the subsurface: Metallic ore deposits. IV. Uluslararası Bilimsel ve Mesleki Çalışmalar Kongresi - Mühendislik Bilimleri (BILMES EN), 07 - 10 Kasım 2019, Ankara, 40-57
  • [2] Özdemir, A. and Palabiyik, Y., (2019). Significance of relationships between hydrocarbons and metallic ore deposits in oil and gas exploration: Part I. Gold deposits. BİLTEK Uluslararası Bilim, Teknoloji ve Sosyal Bilgilerde Güncel Gelişmeler Sempozyumu, 21-22 Aralık 2019, Ankara, 219-229
  • [3] Radtke, A.S. and Scheiner, B.J., (1970). Studies of hydrothermal gold deposition (I). Carlin gold deposit, Nevada: the role of carbonaceous materials in gold deposition. Economic Geology, 65, 87-102
  • [4] Sverjensky, D.A., (1984). Oil field brines as ore-forming solution. Economical Geology, 17, 23-37
  • [5] Radtke, A.S. (1985). Geology of the Carlin gold deposit, Nevada. US Geological Survey Professional Paper 1267, 124 p.
  • [6] Ilchik, R.P., Brimhall, G.H., and Schull, H.W., (1986). Hydrothermal maturation of organic matter at the Alligator Ridge gold deposits, Nevada. Economic Geology, 81, 113-130
  • [7] Gorzhevskiy, D.I., (1987). On the role of organic matter in ore formation. International Geology Review, 29(2), 207-217
  • [8] Parnell, J., (1988). Metal enrichments in solid bitumens. Miner Deposita, 23, 191-199
  • [9] Nelson, C.E., (1990). Comparative geochemistry of jasperoids from Carlin-type gold deposits of the western United States. Journal of Geochemical Exploration, 36, 171-195
  • [10] Nelson, C.E., (1991). Metalliferous marine black shales and fossil petroleum reservoirs - source rock and host environment for Carlin-type gold deposits. Geology and Ore Deposits of the Great Basin - Symposium Proceedings, Geological Society of Nevada, 249- 254
  • [11] Disnar, J.R., Sureau, J.F., (1990). Organic matter in ore genesis: Process and perspectives. Advances in Organic Geochemistry. 16(1-3), 577-599
  • [12] Berger, B.R. and Bagby, W.E., (1991). The geology and origin of Carlin-type gold deposits. in R. P. Foster (Ed.), Gold Metallogeny and Exploration, 210-248
  • [13] Pearcy, E.C. and Burruss, R.C., (1993). Hydrocarbons and gold mineralization in the hot-spring deposit at Cherry Hill, California. in J. Parnell, H. Kucha, P. Landais (editors), Bitumens in Ore Deposits, 117-137
  • [14] Gize, A.P. and Manning, D.A.C., (1993). Aspects of the organic geochemistry and petrology of metalliferous ores. In Organic Geochemistry: Principles and Applications, M.H. Engel and S.A. Macko (eds), 565-580
  • [15] Hulen, J.B. and Collister, J.W., (1999). The oil-bearing, Carlin-type gold deposits of the Yankee basin, Alligator Ridge district, Nevada. Economic Geology, 94, 1029-1049
  • [16] Hulen, J.B., Collister, J.W., Stout, B., Curtiss, D.K., and Dahdah, N.F., (1998). The exhumed “Carlin-type” fossil oil reservoir at Yankee Basin. JOM, 50, 30-34. https://doi.org/10.1007/s11837-998-0303-9
  • [17] Hulen, J.B., (1993). Assessing the role of ancient and active geothermal systems in oil-reservoir evolution in the Eastern Basin and Range Province, Western USA. Office of Basic Energy Sciences, Division of Engineering and Geosciences, U.S. Department of Energy, 21 p.
  • [18] Nicholson, K., (1994). Fluid chemistry and hydrological regimes in geothermal systems: a possible link between gold-depositing and hydrocarbon-bearing aqueous systems. in Parnell, J. (ed.), Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins. Geological Society Special Publication 78, 221-232
  • [19] Kuehn, C.A. and Rose, A.W., (1995). Carlin gold deposits, Nevada: Origin in a deep zone of mixing between normally pressured and overpressured fluids. Economic Geology, 90, 17-36
  • [20] Arehart, G.B., (1996). Characteristics and origin of sediment-hosted gold deposits: a review. Ore Geology Review, 11, 383-403
  • [21] Robb, L.J., Charlesworth, E.G., Drennan, G.R., Gibson, R.L., and Tongu, E.L., (1997). Tectono‐metamorphic setting and paragenetic sequence of Au‐U mineralisation in the Archaean Witwatersrand Basin, South Africa. Australian Journal of Earth Sciences, 44(3), 353-371
  • [22] Zhuang, H.P., Lu, J.L., Fu, J.M., Ren, C.G., and Zou, D.G., (1999). Crude oil as carrier of gold: petrological and geochemical evidence from the Lannigou gold deposit in southwestern Guizhou, China. Science China D: Earth Sciences, 42, 216-224
  • [23] Bao, Z., (2001). Geochemistry of the Sediment-hosted Disseminated Gold Deposits in Southwestern Guizhou Province, China. Universite du Quebec, PhD Thesis, 245 p.
  • [24] Bao, Z., Zhao Z., Guha, J., (2005). Organic geochemistry of sedimentary rock-hosted disseminated gold deposits in Southwestern Guizhou Province, China. Acta Geologica Sinica, 79(1), 120-133
  • [25] Bao, Z. and Guha, J., (2007). Metallogeny of the Lannigou sedimentary rock-hosted disseminated gold deposit in Southwestern Guizhou Province, China. Acta Geologica Sinica, 81(1), 121-134
  • [26] Emsbo, P., Hutchinson, R.W., Hofstra, A.H., Volk, J.A., Bettles, K.H., Baschuk, G.J., and Johnson, C.A., (1999). Syngenetic Au on the Carlin trend: implications for Carlin-type deposits. Geology, 27, 59-62
  • [27] Mossman, D.J., (1999). Carbonaceous substances in mineral deposits: implications for geochemical exploration. Journal of Geochemical Exploration, 66, 241-247
  • [28] Parnell, J. and McCready, A., (2000). Paragenesis of gold- and hydrocarbon-bearing fluids in gold deposits. in: M. Glikson and M. Mastalerz (eds.) Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis, 38-52
  • [29] Sherlock, R., (2000). The association of gold-mercury mineralization and hydrocarbons in the coastal ranges of northern California. in: M. Glikson and M. Mastalerz (eds.) Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis, 378-399
  • [30] Mastalerz, M., Bustin, R.M., Sinclair, A.J., Stankiewicz, B.A., and Thomson, M.L., (2000). Implications of hydrocarbons in gold-bearing epithermal systems: Selected examples from the Canadian Cordillera. in: M. Glikson and M. Mastalerz (eds.) Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis, 378-399
  • [31] Drennan, G.R. and Robb, L.J., (2006). The nature of hydrocarbons and related fluids in the Witwatersrand Basin, South Africa: Their role in metal redistribution, in Reimold, W.U., and Gibson, R.L., Processes on the early Earth: Geological Society of America Special Paper 405, 353-385
  • [32] Mossman, D.J., Minter, W.E.L., Dutkiewicz, A., Hallbauer, D.K., George, S.C., Hennigh, Q., Reimer, T.O., Horscroft, F.D., (2008). The indigenous origin of Witwatersrand “carbon”. Precambrian Research, 164, 173-186
  • [33] Schaefer, B.F., Pearson, D.G., Rogers, N.W., and Barnicoat, A.C., 2010. Re-Os isotope and PGE constraints on the timing and origin of gold mineralisation in the Witwatersrand Basin. Chemical Geology, 276, 88-94
  • [34] Large, R.R., Bull, S.W., and Maslennikov, V.V., (2011). A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits. Economic Geology, 106, 331-358
  • [35] Gu, X.X., Zhang, Y.M., Li, B.H., Dong, S.Y., Xue, C.J., and Fu, S.H., (2012). Hydrocarbon- and ore-bearing basinal fluids: a possible link between gold mineralization and hydrocarbon accumulation in the Youjiang basin, South China. Miner Deposita, 47:663-682
  • [36] Gu, X.X., Liu, J.M., Schulz, O., Vavtar, F., and Zheng, M.H., (2002). Syngenetic origin for the sediment-hosted disseminated gold deposits in NW Sichuan, China: ore fabric evidence. Ore Geology Review, 22, 91-116
  • [37] Gaboury, D., (2013). Does gold in orogenic deposits come from pyrite in deeply buried carbon-rich sediments?: Insight from volatiles in fluid inclusions. Geology, 41, 1207-1210
  • [38] Stein H.J., (2014). Dating and Tracing the History of Ore Formation. in Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, Vol. 13, 87-118
  • [39] Wenzhi, Z., Suyun, H., Wei, L., Tongshan, W., and Hua, J., (2015). The multi-staged “golden zones” of hydrocarbon exploration in superimposed petroliferous basins of onshore China and its significance. Petroleum Exploration and Development, 42(1), 1-13
  • [40] Liu, J., Dai, H., Zhai, D., Wang, J., Wang, Y., Yang, L., Mao, G., Liu, X., Liao, Y., Yu, C., Li, Q., (2015). Geological and geochemical characteristics and formation mechanisms of the Zhaishang Carlin-like type gold deposit, western Qinling Mountains, China. Ore Geology Reviews, 64, 273-298
  • [41] Molnár, F., Oduro, H., Cook, N.D.J., Pohjolainen, E., Takács, A., O’Brien, H., Pakkanen, L., Johanson, B. and Wirth, R., (2016). Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland. Miner Deposita, 51, 681-702
  • [42] Migdisov, A.A., Guo, X., Xu, H., Williams-Jones, A.E., Sun, C.J., Vasyukova, O., Sugiyama, I., Fuchs, S., Pearce, K., and Roback, R., (2017). Hydrocarbons as ore fluids. Geochem. Persp. Let., 5, 47-52
  • [43] Frimmel, H.E., (2018). Episodic concentration of gold to ore grade through Earth's history. Earth-Science Reviews, doi:10.1016/j.earscirev.2018.03.011
  • [44] Crede, L.S., Evans, K.A., Rempel, K.U., Brugger, J., Etschmann, B., Bourdet, J., and Reith, F., (2019). Revisiting hydrocarbon phase mobilization of Au in the Au-Hg McLaughlin Mine, Geysers/Clear Lake area, California, Ore Geology Reviews, doi: https://doi.org/10.1016/j.oregeorev.2019.103218
  • [45] Zhuang, H.P., Lu, J.L., Fu, J.M., Ren, C.G., Zou, D.G., (1999). Crude oil as carrier of gold: petrological and geochemical evidence from the Lannigou gold deposit in southwestern Guizhou, China. Science China D: Earth Sciences, 42, 216-224
  • [46] Oyman, T., Minareci, F., and Pişkin, Ö., (2003). Efemçukuru B-rich epithermal gold deposit (İzmir, Turkey). Ore Geology Reviews, 23, 35-53
  • [47] Tüprag, (2020). http://www.tuprag.com.tr/en/projects/efemcukuru-gold-mine/8/-introduction-and-purpose-of-the-project/29
  • [48] Genç, S.C., Altunkaynak, S., Karacık, Z., Yazman, M., and Yılmaz, Y., (2001). The Çubukludağ graben, south of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodinamica Acta, 14 (1/3), 45-55
  • [49] Akar, A.T., (2012). Seferihisar ve Balçova Jeotermal Alanlarında ve Çevre Akiferlerinde Akışkan Akımının Modellenmesi. Dokuz Eylül Üniversitesi, Doktora Tezi, 194 s.
  • [50] Drahor, M.G. and Berge, M.A., (2006). Geophysical investigations of the Seferihisar geothermal area, Western Anatolia, Turkey. Geothermics, 35, 302-320
  • [51] Uzel, B. and Sözbilir, H., (2008). A First record of strike-slip basin in western Anatolia and its tectonic implication: The Cumaovası basin. Turkish Journal of Earth Sciences, 17, 559-591
  • [52] Ocakoğlu, N., Demirbağ, E. and Kusçu, I., (2004). Neotectonic structures in the area offshore of Alaçatı, Doğanbey and Kuşadası (western Turkey): evidence of strikeslip faulting in the Aegean extensional province. Tectonophysics, 391, 67-83
  • [53] Erdoğan, B., (1990). İzmir - Ankara zonunun İzmir ile Seferihisar arasındaki bölgede stratigrafik özellikleri ve tektonik evrimi. Türkiye Petrol Jeologlar Derneği, 2(1), 1-19
  • [54] Erdoğan, B., (1990). İzmir-Ankara zonu ile Karaburun tektonik kuşağının ilişkisi. Maden Tetkik ve Arama dergisi, 110, 1-15
  • [55] Şalk, M., Göktürkler, G., Özel, M., Karamanderesi, I.H., and Sarı, C., (1999). Crustal temperature distributions in the Western Turkey. Second Balkan Geophysical Congress and Exhibition, İstanbul, Turkey, July 5-9, Book of Abstracts, 174-175
  • [56] Eşder, T. and Şimşek, Ş., (1975). Geology of İzmir (Seferihisar) geothermal area, Western Anatolia of Turkey: determination of reservoirs by means of gradient drilling. In: Proceedings of the Second UN Symposium on the Development and Use of Geothermal Resources, San Francisco, CA, 349-361
  • [57] Aksoy, N., Serpen, U., and Filiz, S., (2008). Management of the Balçova-Narlıdere geothermal reservoir, Turkey. Geothermics, 37, 444-466
  • [58] Aksoy, N., Şimşek, C., and Gündüz, O., (2008). Groundwater contamination mechanism in a geothermal field: A case study of Balçova, Turkey. Journal of Contaminant Hydrogeology, 103(1-2), 13-28
  • [59] Eşder, T. and Şimşek, Ş., (1977). The relationship between the temperature gradient distribution and geological structure in the İzmir-Seferihisar geothermal area, Turkey. in Symposium on Geothermal Energy CENTO Scientific Programme, Ankara, 93-111
  • [60] Özdemir, A., Demirtaş, R. ve Arabacı, F., (2015). Seferihisar Yükselimi Jeolojik Etüt Raporu. 180 s (Yayımlanmamış)
  • [61] Eymold, W.K., Swana, K., Moore, M.T., Whyte, C.J., Harkness, J.S., Talma, S., Murray, R., Moortgat, J.B., Miller, J., Vengosh, A., and Darrah., T.H., (2018). Hydrocarbon-rich groundwater above shale-gas formations: A Karoo basin case study. Groundwater, 56(2), 204-224
  • [62] Kreuzer, R.L., Darrah, T.H., Grove, B.S., Moore, M.T., Warner, N.R., Eymold, W.K., and Poreda, R.J., (2018). Structural and hydrogeological controls on hydrocarbon and brine migration into drinking water aquifers in Southern New York. Groundwater, 56(2), 225-244
  • [63] Dultsev, F.F., and Chernykh, A.V., (2020). Geochemistry of water-dissolved gases of oil-and-gas bearing deposits in Northern and Arctic Regions of Western Siberia. IOP Conf. Series: Earth and Environmental Science, 459, 042024, doi:10.1088/1755-1315/459/4/042024
  • [64] Özdemir, A., (2019). Hasanoğlan (Ankara) petrol sisteminin organik hidrojeokimyasal kanıtları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(6), 748-763
  • [65] Özdemir, A., (2019). Mamak (Ankara) çalışan petrol sistemini jeokimyasal kanıtı olarak olgun hidrokarbonlarca zengin sular ve bölgedeki potansiyel kapan alanı. Avrupa Bilim ve Teknoloji Dergisi, 17, 244-260
  • [66] Özdemir, A., (2019). Büyük Menderes grabeni (Batı Anadolu) Neojen öncesi petrol sisteminin organik hidrojeokimyasal kanıtları ve potansiyel kapanlar. Avrupa Bilim ve Teknoloji Dergisi, 16, 325-354
  • [67] Özdemir, A., Palabiyik, Y., Karataş, A. and Sahinoglu, A., (2020). Mature petroleum hydrocarbons contamination in surface and subsurface waters of Kızılırmak Graben (Central Anatolia, Turkey): Geochemical evidence for a working petroleum system associated with a possible salt diapir. Turkish Journal of Engineering, 1(2), 35-52
  • [68] Palabıyık, Y. ve Özdemir, A., (2020). Türkiye’de petrol ve doğalgaz aranması için suda TPH (Toplam Petrol Hidrokarbonları) analizinin kullanımı: Batı, Kuzeybatı ve Orta Anadolu’dan örnek çalışmalar ve önemli sonuçlar. Türkiye IV. Bilimsel ve Teknik Petrol Kongresi, 18-20 Kasım 2020, Ankara (baskıda)
  • [69] Özdemir, A. ve Palabıyık, Y., (2020). Doğu Pontidler’de olasılıkla Jura-Kretase riftleşmeleri ile ilişkili hidrokarbon oluşumu ve türümü için bulgular. 4. Uluslararası Bilimsel Çalışmalar Kongresi, 28-30 Eylül 2020 (baskıda)
  • [70] Özdemir, A., (2018). Suda TPH (Toplam Petrol Hidrokarbonları) analizinin petrol ve doğalgaz arama amaçlı kullanımı: Türkiye’den ilk önemli sonuçlar. Mühendislik Bilimleri ve Tasarım Dergisi, 6(4), 615-636
  • [71] Liu, S., Qi, S., Luo, Z., Liu, F., Ding, Y., Huang, H., Chen, Z., and Cheng, S., (2018). The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China. Environmental Geochemistry and Health, 40(1), 415-433
  • [72] Hunt, J.M., (1995). Petroleum Geochemistry and Geology. W.H. Freeman and Company, New York. 743 p
  • [73] Zemo, D.A. and Foote, G.R., (2003). The technical case eliminating the use of the TPH analysis in assessing and regulating dissolved petroleum hydrocarbons in groundwater. Ground Water Monitoring & Remediation, 23(3), 95-104
  • [74] Tarım ve Orman Bakanlığı, 2004. Türkiye Yerüstü Su Kalitesi Yönetmeliği, http://www.resmigazete.gov.tr/eskiler/2016/08/20160810-9.htm
  • [75] Tarım ve Orman Bakanlığı, 2004. Türkiye Su Kirliliği Kontrolü Yönetmeliği, http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.7221&MevzuatIliski=0&sourceXmlSearch=
  • [76] Tissot, B.P. and Welte, D.H., (1984). Petroleum Formation and Occurrence. Springer-Verlag, 699 p.
  • [77] Peters, K.E. and Moldowan, J.M., (1993). The Biomarker Guide, Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, Jersey, Prentice Hall, 339-363
  • [78] Tran, K.L. and Philippe, B., (1993). Oil and rock extract analysis. in Applied Petroleum Geochemistry (M.L., Bordenave, eds.), p. 373-394
  • [79] Beyer, J., Jonsson, G., Porte, C., Krahn, M.M. and Ariese, F., (2010). Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: a review. Environ. Toxicol Pharmacol, 30(3), 224-244
  • [80] Mille, G., Asia, L., Guiliano, M., Malleret, L. and Doumenq, P., (2007). Hydrocarbons in coastal sediments from the Mediterranean Sea (Gulf of Fos area, France). Marine Pollution Bulletin, 54, 566-575
  • [81] Waples, D.W., (1985). Geochemistry in Petroleum Exploration. International Human Resources Development Corp., 232 p.
  • [82] Onojake, M.C., Osuji, L.C. and Oforka, N.C., (2013). Preliminary hydrocarbon analysis of crude oils from Umutu/Bomu fields, south west Niger Delta Nigeria. Egyptian Journal of Petroleum, 22, 217-224
  • [83] Bray, E.E. and Evans, E.D., (1961). Distribution of n-paraffins as a clue to recognition of source rocks. Geochim. Cosmochim, Acta. 22, 2-15
  • [84] Bray, E.E. and Evans, E.D., (1965). Hydrocarbons in non-reservoir-rock source beds: Part 1. American Association of Petroleum Geologists Bulletin, 49, 248-257
  • [85] Didyk, B.M., Simoneit, B.R.T., Brassel, S.C. and Englington, G., (1978). Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, 272, 216-222
  • [86] Volkman, J.K. and Maxwell, J.R., (1986). Acyclic isoprenoids as biological markers. In: Biological Markers in the Sedimentary Record (R.B. Johns, eds.), Elsevier, New York; pp. 1-42
  • [87] Hartkopf-Fröder, C., Kloppisch, M., Mann, U., Neumann-Mahlkau, P., Schaefer, R.G. and Wilkes, H., (2007). The end-Frasnian mass extinction in the Eifel Mountains, Germany: new insights from organic matter composition and preservation. Geological Society, London, Special Publications, 278, 173-196. doi: 10.1144/SP278.8
  • [88] Shanmugam, G., (1985). Significance of coniferous rain forests and related oil, Gippsland Basin, Australia. AAPG Bulletin, 69, 1241-1254
  • [89] Larasati, D., Suprayogi, K. and Akbar, A., (2016). Crude oil characterization of Tarakan basin: Application of biomarkers. The 9th International Conference on Petroleum Geochemistry in the Africa - Asia Region Bandung, Indonesia, 15 -17 November 2016
  • [90] Devi, E.A., Rachman, F., Satyana, A.H., Fahrudin, and Setyawan, R., (2018). Geochemistry of Mudi and Sukowati oils, East Java basin and their correlative source rocks: Biomarkers and isotopic characterisation. Procedings, Indonesian Petroleum Association, Forty-Second Annual Convention & Exhibition, May 2018
  • [91] Syaifudin, M., Eddy, A., Subroto, E.A., Noeradi, D. and Kesumajana, A.H.P., (2015). Characterızation and correlatıon study of source rocks and oils in Kuang area, South Sumatra basin: The potential of Lemat formation as hydrocarbon source rocks. Proceedings of Indonesian Petroleum Association, Thirty-Ninth Annual Convention & Exhibition, May 2015, IPA15-G-034
  • [92] Banga, T., Capuano, R.M. and Bissada, K.K., (2011). Petroleum generation in the southeast Texas basin: Implications for hydrocarbon occurrence at the South Liberty salt dome. AAPG Bulletin, 95(7), 1257-1291
  • [93] Hakimi, M.H., Al-Matary, A.M. and Ahmed, A.., (2017). Bulk geochemical characteristics and carbon isotope composition of oils from the Sayhut sub-basin in the Gulf of Aden with emphasis on organic matter input, age and maturity. Egyptian Journal of Petroleum, https://doi.org/10.1016/j.ejpe.2017.06.002
  • [94] Nettleton, L.L., (1976). Gravity and Magnetics in Oil Prospecting. McGraw-Hill, 464 p.
  • [95] Aydın, A., (1997). Gravite Verilerinin Normalize Edilmiş Tam Gradyan, Varyasyon ve İstatistik Yöntemleri ile Hidrokarbon Açısından Değerlendirilmesi, Model Çalışmalar ve Hasankale-Horasan (Erzurum) Havzasına Uygulanması. Karadeniz Teknik Üniversitesi, Doktora Tezi, 151 s.
  • [96] Aydın, A., (2004). Gravite anomalilerinin doğrudan yorum yöntemleri ile değerlendirilmesi: Hasankale-Horasan bölgesinden bir uygulama. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 11(1), 95-102
  • [97] Gadirov, V.G., Eppelbaum, L.V., Kuderavets, R.S., Menshov, O.I., and Gadirov, K.V., (2018). Indicative features of local magnetic anomalies from hydrocarbon deposits: examples from Azerbaijan and Ukraine, Acta Geophysica, doi: 10.1007/s11600-018-0224-0
  • [98] Gadirov, V.G. and Eppelbaum, L.V., (2012). Detailed gravity, magnetics successful in exploring Azerbaijan onshore areas. Oil and Gas Journal, 5, 60-73
  • [99] Gadirov, V.G., (1994). The physical-geological principles of application of gravity and magnetic prospecting in searching oil and gas deposits. Proceed. of 10th Petroleum Congress and Exhibition of Turkey, Ankara, pp. 197-20
  • [100] Geist, E.L., Childs, J.R., and Scholl, D.W., (1987). Evolution and petroleum geology of Amlia and Amukta intra-arc summit basins, Aleutian Ridge. Marine and Petroleum Geology, 4, 334-352
  • [101] Lyatsky, H.V., Thurston, J.B., Brown, R.J. and Lyatsky, V.B., (1992). Hydrocarbon exploration applications of potential field horizontal gradient vector maps. Canadian Society of Exploration Geophysicists Recorder, 17(9), 10-15
  • [102] Piskarev, A.L. and Tchernyshev, M.Y., (1997). Magnetic and gravity anomaly patterns related to hydrocarbon fields in northern West Siberia. Geophysics, 62(3), 831-841
  • [103] Satyana, A.H., (2015). Subvolcanic hydrocarbon prospectivity of Java: Opportunities and challenges. Proceedings, Indonesian Petroleum Association. Thirty-Ninth Annual Convention & Exhibition, May 2015. IPA15-G-105
  • [104] Stephen, O.I. and Iduma, U., (2018). Hydrocarbon potential of Nigeria’s Inland Basin: Case study of Afikpo basin. Journal of Applied Geology and Geophysics, 6(4), 1-24
  • [105] Eke, P.O. and Okeke, F.N., (2016). Identification of hydrocarbon regions in Southern Niger Delta Basin of Nigeria from potential field data. International Journal of Scientific and Technology Research, 5(11), 96-99
  • [106] Svancara, J., (1983). Approximate method for direct interpretation of gravity anomalies caused by surface three‐dimensional geologic structures. Geophysics, 48(3), 361-366, https://doi.org/10.1190/1.1441474
  • [107] Töpfer, K.D., (1977). Improved technique for rapid interpretation of gravity anomalies caused by two-dimensional sedimentary basins. Journal of Geophysics, 43, 645-654 (in Švancara, J., 1983. Approximate method for direct interpretation of gravity anomalies caused by surface three‐dimensional geologic structures. Geophysics, 48(3), 361-366, https://doi.org/10.1190/1.1441474)
  • [108] Festa, A., Pini, G.A., Dilek, Y. and Codegone, G., (2010). Mélanges and mélange-forming processes: a historical overview and new concepts. International Geology Review, 52(10-12), 1040-1105
  • [109] Özdemir, A., Palabıyık, Y., (2020). Petrol ve doğalgaz kaynak kayası, ofiyolitler, manto sorgucu ve toplu yokolma arasındaki ilişkilere göre Türkiye’nin petrol ve doğalgaz potansiyeli. 4. Uluslararası Bilimsel Çalışmalar Kongresi, 28-30 Eylül 2020 (baskıda)
  • [110] Özdemir, A. ve Palabıyık, Y., (2020). Türkiye'nin Paleozoyik - Miyosen jeolojik zaman aralığındaki petrol ve doğalgaz kaynak kaya varlığının paleocoğrafik ve paleotektonik veriler ışığında kapsamlı bir değerlendirmesi. Avrupa Bilim ve Teknoloji Dergisi (baskıda)
  • [111] Beccaletto, L., (2003). Geology, correlations, and geodynamic evolution of the Biga Peninsula (NW Turkey). Université de Lausanne, PhD Thesis, 140 p.
  • [112] Yiğit, O., (2009). Mineral deposits of Turkey in relation to Tethyan Metallogeny: Implications for future mineral exploration. Economic Geology, 104, 19-51
  • [113] İnan, A., (1982). Azerbaycan’ın çamur volkanları. Yeryuvarı ve İnsan, 7(1), 4-5
  • [114] Guliev, I.S., Mamedov, P.Z., Feyzullayev, A.A., Huseynov, D.A. Kadirov, F.A., Aliyeva, E.H.-M. and Tagiyev, M.F., 2003. Hydrocarbon Systems of the South Caspian Basin. Baku, Nafta-Press, 206 p.
  • [115] Guliev, I.S. and Feizullayev, A.A., (1996). Geochemistry of hydrocarbon seepages in Azerbaijan. in D. Schumacher and M. A. Abrams, eds., Hydrocarbon migration and its near-surface expression: AAPG Memoir 66, 63-70
  • [116] López-Rodríguez, C., Stadnitskaia, A., De Lange, G.J., Martínez-Ruíz, F., Comas, M., and Sinninghe Damsté, J.S., (2014). Origin of lipid biomarkers in mud volcanoes from the Alboran Sea, western Mediterranean. Biogeosciences, 11, 3187-3204
  • [117] Mazzini, A. and Etiope, G., (2017). Mud volcanism: An updated review. Earth-Science Reviews, Earth-Science Reviews, 168, 81-112
  • [118] Mazzini, M., Svensen, H., Planke, S., Guliyev, I., Akhmanov, G.G., Fallik, T. and Banks. D., (2009). When mud volcanoes sleep: Insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan. Marine and Petroleum Geology, 26,1704-1715
  • [119] Oppo, D., Capozzi, R., Nigarov, A. and Esenov, P., (2014). Mud volcanism and fluid geochemistry in the Cheleken Peninsula, Western Turkmenistan. Marine and Petroleum Geology, 57, 122-134
  • [120] Oppo, D. and Capozzi, R., (2016). Spatial association of mud volcano and sandstone intrusions, Boyadag Anticline, Western Turkmenistan. Basin Research, 28(6), 827-839
  • [121] Planke, S., Svensen, H., Hovland, M., Banks, D.A. and Jamtveit, B., (2003). Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Mar. Lett. 23, 258-268
  • [122] Stadnitskaia, A., Blinova, V., Ivanov, M.K., Baas, M., Hopmans, E., van Weering, T.C.E., and Sinninghe Damste, J.S., (2007). Lipid biomarkers in sediments of mud volcanoes from the Sorokin Trough, NE Black Sea: Probable source strata for the erupted material. Organic Geochemistry, 38, 67-83
  • [123] Özdemir, A., Palabiyik, A. ve Karataş., A., (2020). Türkiye Denizlerinin Petrol ve Doğalgaz Potansiyeli, Gelecek Hidrokarbon Araştırmaları için Hedef Alanlar ve Sondaj Lokasyonları. Enerji Araştırmaları (Editör: Neşeli, S.), İksad Yayınevi, 53-123
  • [124] Nakada, R., Takahashi, Y., Tsunogai, U., Zheng, G., Hiroshi Shimizu, H., and Hattori, K.H., (2011). A geochemical study on mud volcanoes in the Junggar Basin, China. Applied Geochemistry, 26(7), 1065-1076
  • [125] Tassi, F., Bonini, M., Montegrossi, G., Capecchiacci, F., Capaccioni, B., Vaselli, O., (2012). Origin of light hydrocarbons in gases from mud volcanoes and CH4-rich emissions. Chemical Geology, 294-295, 113-12
  • [126] Alizadeh, A.A., Guliyev, I.S., Kadirov, F.A., and Eppelbaum, L.V., (2017). Mud Volcanism. in Geosciences of Azerbaijan Volume I: Geology. Springer, 215-233
  • [127] Babadi, M.F., Mehrabi, B., Tassi, F., Cabassi, J., Pecchioni, E., Shakeri, A., and Vaselli, O., (2020). Geochemistry of fluids discharged from mud volcanoes in SE Caspian Sea (Gorgan Plain, Iran). International Geology Review, https://doi.org/10.1080/00206814.2020.1716400
  • [128] Bonini, M., Tassi, F., Feyzullayev, A.A., Aliyev, C.S., Capecchiacci, F., and Minissale, A., (2013). Deep gases discharged from mud volcanoes of Azerbaijan: New geochemical evidence. Marine and Petroleum Geology, 43 450-463
Year 2021, , 1 - 28, 31.08.2021
https://doi.org/10.46740/alku.799387

Abstract

Project Number

SOS-A-100719-0267

References

  • [1] Özdemir, A. and Palabiyik, Y., (2019). A shallow and reliable indicator for deep oil and gas accumulations in the subsurface: Metallic ore deposits. IV. Uluslararası Bilimsel ve Mesleki Çalışmalar Kongresi - Mühendislik Bilimleri (BILMES EN), 07 - 10 Kasım 2019, Ankara, 40-57
  • [2] Özdemir, A. and Palabiyik, Y., (2019). Significance of relationships between hydrocarbons and metallic ore deposits in oil and gas exploration: Part I. Gold deposits. BİLTEK Uluslararası Bilim, Teknoloji ve Sosyal Bilgilerde Güncel Gelişmeler Sempozyumu, 21-22 Aralık 2019, Ankara, 219-229
  • [3] Radtke, A.S. and Scheiner, B.J., (1970). Studies of hydrothermal gold deposition (I). Carlin gold deposit, Nevada: the role of carbonaceous materials in gold deposition. Economic Geology, 65, 87-102
  • [4] Sverjensky, D.A., (1984). Oil field brines as ore-forming solution. Economical Geology, 17, 23-37
  • [5] Radtke, A.S. (1985). Geology of the Carlin gold deposit, Nevada. US Geological Survey Professional Paper 1267, 124 p.
  • [6] Ilchik, R.P., Brimhall, G.H., and Schull, H.W., (1986). Hydrothermal maturation of organic matter at the Alligator Ridge gold deposits, Nevada. Economic Geology, 81, 113-130
  • [7] Gorzhevskiy, D.I., (1987). On the role of organic matter in ore formation. International Geology Review, 29(2), 207-217
  • [8] Parnell, J., (1988). Metal enrichments in solid bitumens. Miner Deposita, 23, 191-199
  • [9] Nelson, C.E., (1990). Comparative geochemistry of jasperoids from Carlin-type gold deposits of the western United States. Journal of Geochemical Exploration, 36, 171-195
  • [10] Nelson, C.E., (1991). Metalliferous marine black shales and fossil petroleum reservoirs - source rock and host environment for Carlin-type gold deposits. Geology and Ore Deposits of the Great Basin - Symposium Proceedings, Geological Society of Nevada, 249- 254
  • [11] Disnar, J.R., Sureau, J.F., (1990). Organic matter in ore genesis: Process and perspectives. Advances in Organic Geochemistry. 16(1-3), 577-599
  • [12] Berger, B.R. and Bagby, W.E., (1991). The geology and origin of Carlin-type gold deposits. in R. P. Foster (Ed.), Gold Metallogeny and Exploration, 210-248
  • [13] Pearcy, E.C. and Burruss, R.C., (1993). Hydrocarbons and gold mineralization in the hot-spring deposit at Cherry Hill, California. in J. Parnell, H. Kucha, P. Landais (editors), Bitumens in Ore Deposits, 117-137
  • [14] Gize, A.P. and Manning, D.A.C., (1993). Aspects of the organic geochemistry and petrology of metalliferous ores. In Organic Geochemistry: Principles and Applications, M.H. Engel and S.A. Macko (eds), 565-580
  • [15] Hulen, J.B. and Collister, J.W., (1999). The oil-bearing, Carlin-type gold deposits of the Yankee basin, Alligator Ridge district, Nevada. Economic Geology, 94, 1029-1049
  • [16] Hulen, J.B., Collister, J.W., Stout, B., Curtiss, D.K., and Dahdah, N.F., (1998). The exhumed “Carlin-type” fossil oil reservoir at Yankee Basin. JOM, 50, 30-34. https://doi.org/10.1007/s11837-998-0303-9
  • [17] Hulen, J.B., (1993). Assessing the role of ancient and active geothermal systems in oil-reservoir evolution in the Eastern Basin and Range Province, Western USA. Office of Basic Energy Sciences, Division of Engineering and Geosciences, U.S. Department of Energy, 21 p.
  • [18] Nicholson, K., (1994). Fluid chemistry and hydrological regimes in geothermal systems: a possible link between gold-depositing and hydrocarbon-bearing aqueous systems. in Parnell, J. (ed.), Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins. Geological Society Special Publication 78, 221-232
  • [19] Kuehn, C.A. and Rose, A.W., (1995). Carlin gold deposits, Nevada: Origin in a deep zone of mixing between normally pressured and overpressured fluids. Economic Geology, 90, 17-36
  • [20] Arehart, G.B., (1996). Characteristics and origin of sediment-hosted gold deposits: a review. Ore Geology Review, 11, 383-403
  • [21] Robb, L.J., Charlesworth, E.G., Drennan, G.R., Gibson, R.L., and Tongu, E.L., (1997). Tectono‐metamorphic setting and paragenetic sequence of Au‐U mineralisation in the Archaean Witwatersrand Basin, South Africa. Australian Journal of Earth Sciences, 44(3), 353-371
  • [22] Zhuang, H.P., Lu, J.L., Fu, J.M., Ren, C.G., and Zou, D.G., (1999). Crude oil as carrier of gold: petrological and geochemical evidence from the Lannigou gold deposit in southwestern Guizhou, China. Science China D: Earth Sciences, 42, 216-224
  • [23] Bao, Z., (2001). Geochemistry of the Sediment-hosted Disseminated Gold Deposits in Southwestern Guizhou Province, China. Universite du Quebec, PhD Thesis, 245 p.
  • [24] Bao, Z., Zhao Z., Guha, J., (2005). Organic geochemistry of sedimentary rock-hosted disseminated gold deposits in Southwestern Guizhou Province, China. Acta Geologica Sinica, 79(1), 120-133
  • [25] Bao, Z. and Guha, J., (2007). Metallogeny of the Lannigou sedimentary rock-hosted disseminated gold deposit in Southwestern Guizhou Province, China. Acta Geologica Sinica, 81(1), 121-134
  • [26] Emsbo, P., Hutchinson, R.W., Hofstra, A.H., Volk, J.A., Bettles, K.H., Baschuk, G.J., and Johnson, C.A., (1999). Syngenetic Au on the Carlin trend: implications for Carlin-type deposits. Geology, 27, 59-62
  • [27] Mossman, D.J., (1999). Carbonaceous substances in mineral deposits: implications for geochemical exploration. Journal of Geochemical Exploration, 66, 241-247
  • [28] Parnell, J. and McCready, A., (2000). Paragenesis of gold- and hydrocarbon-bearing fluids in gold deposits. in: M. Glikson and M. Mastalerz (eds.) Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis, 38-52
  • [29] Sherlock, R., (2000). The association of gold-mercury mineralization and hydrocarbons in the coastal ranges of northern California. in: M. Glikson and M. Mastalerz (eds.) Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis, 378-399
  • [30] Mastalerz, M., Bustin, R.M., Sinclair, A.J., Stankiewicz, B.A., and Thomson, M.L., (2000). Implications of hydrocarbons in gold-bearing epithermal systems: Selected examples from the Canadian Cordillera. in: M. Glikson and M. Mastalerz (eds.) Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis, 378-399
  • [31] Drennan, G.R. and Robb, L.J., (2006). The nature of hydrocarbons and related fluids in the Witwatersrand Basin, South Africa: Their role in metal redistribution, in Reimold, W.U., and Gibson, R.L., Processes on the early Earth: Geological Society of America Special Paper 405, 353-385
  • [32] Mossman, D.J., Minter, W.E.L., Dutkiewicz, A., Hallbauer, D.K., George, S.C., Hennigh, Q., Reimer, T.O., Horscroft, F.D., (2008). The indigenous origin of Witwatersrand “carbon”. Precambrian Research, 164, 173-186
  • [33] Schaefer, B.F., Pearson, D.G., Rogers, N.W., and Barnicoat, A.C., 2010. Re-Os isotope and PGE constraints on the timing and origin of gold mineralisation in the Witwatersrand Basin. Chemical Geology, 276, 88-94
  • [34] Large, R.R., Bull, S.W., and Maslennikov, V.V., (2011). A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits. Economic Geology, 106, 331-358
  • [35] Gu, X.X., Zhang, Y.M., Li, B.H., Dong, S.Y., Xue, C.J., and Fu, S.H., (2012). Hydrocarbon- and ore-bearing basinal fluids: a possible link between gold mineralization and hydrocarbon accumulation in the Youjiang basin, South China. Miner Deposita, 47:663-682
  • [36] Gu, X.X., Liu, J.M., Schulz, O., Vavtar, F., and Zheng, M.H., (2002). Syngenetic origin for the sediment-hosted disseminated gold deposits in NW Sichuan, China: ore fabric evidence. Ore Geology Review, 22, 91-116
  • [37] Gaboury, D., (2013). Does gold in orogenic deposits come from pyrite in deeply buried carbon-rich sediments?: Insight from volatiles in fluid inclusions. Geology, 41, 1207-1210
  • [38] Stein H.J., (2014). Dating and Tracing the History of Ore Formation. in Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, Vol. 13, 87-118
  • [39] Wenzhi, Z., Suyun, H., Wei, L., Tongshan, W., and Hua, J., (2015). The multi-staged “golden zones” of hydrocarbon exploration in superimposed petroliferous basins of onshore China and its significance. Petroleum Exploration and Development, 42(1), 1-13
  • [40] Liu, J., Dai, H., Zhai, D., Wang, J., Wang, Y., Yang, L., Mao, G., Liu, X., Liao, Y., Yu, C., Li, Q., (2015). Geological and geochemical characteristics and formation mechanisms of the Zhaishang Carlin-like type gold deposit, western Qinling Mountains, China. Ore Geology Reviews, 64, 273-298
  • [41] Molnár, F., Oduro, H., Cook, N.D.J., Pohjolainen, E., Takács, A., O’Brien, H., Pakkanen, L., Johanson, B. and Wirth, R., (2016). Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland. Miner Deposita, 51, 681-702
  • [42] Migdisov, A.A., Guo, X., Xu, H., Williams-Jones, A.E., Sun, C.J., Vasyukova, O., Sugiyama, I., Fuchs, S., Pearce, K., and Roback, R., (2017). Hydrocarbons as ore fluids. Geochem. Persp. Let., 5, 47-52
  • [43] Frimmel, H.E., (2018). Episodic concentration of gold to ore grade through Earth's history. Earth-Science Reviews, doi:10.1016/j.earscirev.2018.03.011
  • [44] Crede, L.S., Evans, K.A., Rempel, K.U., Brugger, J., Etschmann, B., Bourdet, J., and Reith, F., (2019). Revisiting hydrocarbon phase mobilization of Au in the Au-Hg McLaughlin Mine, Geysers/Clear Lake area, California, Ore Geology Reviews, doi: https://doi.org/10.1016/j.oregeorev.2019.103218
  • [45] Zhuang, H.P., Lu, J.L., Fu, J.M., Ren, C.G., Zou, D.G., (1999). Crude oil as carrier of gold: petrological and geochemical evidence from the Lannigou gold deposit in southwestern Guizhou, China. Science China D: Earth Sciences, 42, 216-224
  • [46] Oyman, T., Minareci, F., and Pişkin, Ö., (2003). Efemçukuru B-rich epithermal gold deposit (İzmir, Turkey). Ore Geology Reviews, 23, 35-53
  • [47] Tüprag, (2020). http://www.tuprag.com.tr/en/projects/efemcukuru-gold-mine/8/-introduction-and-purpose-of-the-project/29
  • [48] Genç, S.C., Altunkaynak, S., Karacık, Z., Yazman, M., and Yılmaz, Y., (2001). The Çubukludağ graben, south of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodinamica Acta, 14 (1/3), 45-55
  • [49] Akar, A.T., (2012). Seferihisar ve Balçova Jeotermal Alanlarında ve Çevre Akiferlerinde Akışkan Akımının Modellenmesi. Dokuz Eylül Üniversitesi, Doktora Tezi, 194 s.
  • [50] Drahor, M.G. and Berge, M.A., (2006). Geophysical investigations of the Seferihisar geothermal area, Western Anatolia, Turkey. Geothermics, 35, 302-320
  • [51] Uzel, B. and Sözbilir, H., (2008). A First record of strike-slip basin in western Anatolia and its tectonic implication: The Cumaovası basin. Turkish Journal of Earth Sciences, 17, 559-591
  • [52] Ocakoğlu, N., Demirbağ, E. and Kusçu, I., (2004). Neotectonic structures in the area offshore of Alaçatı, Doğanbey and Kuşadası (western Turkey): evidence of strikeslip faulting in the Aegean extensional province. Tectonophysics, 391, 67-83
  • [53] Erdoğan, B., (1990). İzmir - Ankara zonunun İzmir ile Seferihisar arasındaki bölgede stratigrafik özellikleri ve tektonik evrimi. Türkiye Petrol Jeologlar Derneği, 2(1), 1-19
  • [54] Erdoğan, B., (1990). İzmir-Ankara zonu ile Karaburun tektonik kuşağının ilişkisi. Maden Tetkik ve Arama dergisi, 110, 1-15
  • [55] Şalk, M., Göktürkler, G., Özel, M., Karamanderesi, I.H., and Sarı, C., (1999). Crustal temperature distributions in the Western Turkey. Second Balkan Geophysical Congress and Exhibition, İstanbul, Turkey, July 5-9, Book of Abstracts, 174-175
  • [56] Eşder, T. and Şimşek, Ş., (1975). Geology of İzmir (Seferihisar) geothermal area, Western Anatolia of Turkey: determination of reservoirs by means of gradient drilling. In: Proceedings of the Second UN Symposium on the Development and Use of Geothermal Resources, San Francisco, CA, 349-361
  • [57] Aksoy, N., Serpen, U., and Filiz, S., (2008). Management of the Balçova-Narlıdere geothermal reservoir, Turkey. Geothermics, 37, 444-466
  • [58] Aksoy, N., Şimşek, C., and Gündüz, O., (2008). Groundwater contamination mechanism in a geothermal field: A case study of Balçova, Turkey. Journal of Contaminant Hydrogeology, 103(1-2), 13-28
  • [59] Eşder, T. and Şimşek, Ş., (1977). The relationship between the temperature gradient distribution and geological structure in the İzmir-Seferihisar geothermal area, Turkey. in Symposium on Geothermal Energy CENTO Scientific Programme, Ankara, 93-111
  • [60] Özdemir, A., Demirtaş, R. ve Arabacı, F., (2015). Seferihisar Yükselimi Jeolojik Etüt Raporu. 180 s (Yayımlanmamış)
  • [61] Eymold, W.K., Swana, K., Moore, M.T., Whyte, C.J., Harkness, J.S., Talma, S., Murray, R., Moortgat, J.B., Miller, J., Vengosh, A., and Darrah., T.H., (2018). Hydrocarbon-rich groundwater above shale-gas formations: A Karoo basin case study. Groundwater, 56(2), 204-224
  • [62] Kreuzer, R.L., Darrah, T.H., Grove, B.S., Moore, M.T., Warner, N.R., Eymold, W.K., and Poreda, R.J., (2018). Structural and hydrogeological controls on hydrocarbon and brine migration into drinking water aquifers in Southern New York. Groundwater, 56(2), 225-244
  • [63] Dultsev, F.F., and Chernykh, A.V., (2020). Geochemistry of water-dissolved gases of oil-and-gas bearing deposits in Northern and Arctic Regions of Western Siberia. IOP Conf. Series: Earth and Environmental Science, 459, 042024, doi:10.1088/1755-1315/459/4/042024
  • [64] Özdemir, A., (2019). Hasanoğlan (Ankara) petrol sisteminin organik hidrojeokimyasal kanıtları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(6), 748-763
  • [65] Özdemir, A., (2019). Mamak (Ankara) çalışan petrol sistemini jeokimyasal kanıtı olarak olgun hidrokarbonlarca zengin sular ve bölgedeki potansiyel kapan alanı. Avrupa Bilim ve Teknoloji Dergisi, 17, 244-260
  • [66] Özdemir, A., (2019). Büyük Menderes grabeni (Batı Anadolu) Neojen öncesi petrol sisteminin organik hidrojeokimyasal kanıtları ve potansiyel kapanlar. Avrupa Bilim ve Teknoloji Dergisi, 16, 325-354
  • [67] Özdemir, A., Palabiyik, Y., Karataş, A. and Sahinoglu, A., (2020). Mature petroleum hydrocarbons contamination in surface and subsurface waters of Kızılırmak Graben (Central Anatolia, Turkey): Geochemical evidence for a working petroleum system associated with a possible salt diapir. Turkish Journal of Engineering, 1(2), 35-52
  • [68] Palabıyık, Y. ve Özdemir, A., (2020). Türkiye’de petrol ve doğalgaz aranması için suda TPH (Toplam Petrol Hidrokarbonları) analizinin kullanımı: Batı, Kuzeybatı ve Orta Anadolu’dan örnek çalışmalar ve önemli sonuçlar. Türkiye IV. Bilimsel ve Teknik Petrol Kongresi, 18-20 Kasım 2020, Ankara (baskıda)
  • [69] Özdemir, A. ve Palabıyık, Y., (2020). Doğu Pontidler’de olasılıkla Jura-Kretase riftleşmeleri ile ilişkili hidrokarbon oluşumu ve türümü için bulgular. 4. Uluslararası Bilimsel Çalışmalar Kongresi, 28-30 Eylül 2020 (baskıda)
  • [70] Özdemir, A., (2018). Suda TPH (Toplam Petrol Hidrokarbonları) analizinin petrol ve doğalgaz arama amaçlı kullanımı: Türkiye’den ilk önemli sonuçlar. Mühendislik Bilimleri ve Tasarım Dergisi, 6(4), 615-636
  • [71] Liu, S., Qi, S., Luo, Z., Liu, F., Ding, Y., Huang, H., Chen, Z., and Cheng, S., (2018). The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China. Environmental Geochemistry and Health, 40(1), 415-433
  • [72] Hunt, J.M., (1995). Petroleum Geochemistry and Geology. W.H. Freeman and Company, New York. 743 p
  • [73] Zemo, D.A. and Foote, G.R., (2003). The technical case eliminating the use of the TPH analysis in assessing and regulating dissolved petroleum hydrocarbons in groundwater. Ground Water Monitoring & Remediation, 23(3), 95-104
  • [74] Tarım ve Orman Bakanlığı, 2004. Türkiye Yerüstü Su Kalitesi Yönetmeliği, http://www.resmigazete.gov.tr/eskiler/2016/08/20160810-9.htm
  • [75] Tarım ve Orman Bakanlığı, 2004. Türkiye Su Kirliliği Kontrolü Yönetmeliği, http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.7221&MevzuatIliski=0&sourceXmlSearch=
  • [76] Tissot, B.P. and Welte, D.H., (1984). Petroleum Formation and Occurrence. Springer-Verlag, 699 p.
  • [77] Peters, K.E. and Moldowan, J.M., (1993). The Biomarker Guide, Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, Jersey, Prentice Hall, 339-363
  • [78] Tran, K.L. and Philippe, B., (1993). Oil and rock extract analysis. in Applied Petroleum Geochemistry (M.L., Bordenave, eds.), p. 373-394
  • [79] Beyer, J., Jonsson, G., Porte, C., Krahn, M.M. and Ariese, F., (2010). Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: a review. Environ. Toxicol Pharmacol, 30(3), 224-244
  • [80] Mille, G., Asia, L., Guiliano, M., Malleret, L. and Doumenq, P., (2007). Hydrocarbons in coastal sediments from the Mediterranean Sea (Gulf of Fos area, France). Marine Pollution Bulletin, 54, 566-575
  • [81] Waples, D.W., (1985). Geochemistry in Petroleum Exploration. International Human Resources Development Corp., 232 p.
  • [82] Onojake, M.C., Osuji, L.C. and Oforka, N.C., (2013). Preliminary hydrocarbon analysis of crude oils from Umutu/Bomu fields, south west Niger Delta Nigeria. Egyptian Journal of Petroleum, 22, 217-224
  • [83] Bray, E.E. and Evans, E.D., (1961). Distribution of n-paraffins as a clue to recognition of source rocks. Geochim. Cosmochim, Acta. 22, 2-15
  • [84] Bray, E.E. and Evans, E.D., (1965). Hydrocarbons in non-reservoir-rock source beds: Part 1. American Association of Petroleum Geologists Bulletin, 49, 248-257
  • [85] Didyk, B.M., Simoneit, B.R.T., Brassel, S.C. and Englington, G., (1978). Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, 272, 216-222
  • [86] Volkman, J.K. and Maxwell, J.R., (1986). Acyclic isoprenoids as biological markers. In: Biological Markers in the Sedimentary Record (R.B. Johns, eds.), Elsevier, New York; pp. 1-42
  • [87] Hartkopf-Fröder, C., Kloppisch, M., Mann, U., Neumann-Mahlkau, P., Schaefer, R.G. and Wilkes, H., (2007). The end-Frasnian mass extinction in the Eifel Mountains, Germany: new insights from organic matter composition and preservation. Geological Society, London, Special Publications, 278, 173-196. doi: 10.1144/SP278.8
  • [88] Shanmugam, G., (1985). Significance of coniferous rain forests and related oil, Gippsland Basin, Australia. AAPG Bulletin, 69, 1241-1254
  • [89] Larasati, D., Suprayogi, K. and Akbar, A., (2016). Crude oil characterization of Tarakan basin: Application of biomarkers. The 9th International Conference on Petroleum Geochemistry in the Africa - Asia Region Bandung, Indonesia, 15 -17 November 2016
  • [90] Devi, E.A., Rachman, F., Satyana, A.H., Fahrudin, and Setyawan, R., (2018). Geochemistry of Mudi and Sukowati oils, East Java basin and their correlative source rocks: Biomarkers and isotopic characterisation. Procedings, Indonesian Petroleum Association, Forty-Second Annual Convention & Exhibition, May 2018
  • [91] Syaifudin, M., Eddy, A., Subroto, E.A., Noeradi, D. and Kesumajana, A.H.P., (2015). Characterızation and correlatıon study of source rocks and oils in Kuang area, South Sumatra basin: The potential of Lemat formation as hydrocarbon source rocks. Proceedings of Indonesian Petroleum Association, Thirty-Ninth Annual Convention & Exhibition, May 2015, IPA15-G-034
  • [92] Banga, T., Capuano, R.M. and Bissada, K.K., (2011). Petroleum generation in the southeast Texas basin: Implications for hydrocarbon occurrence at the South Liberty salt dome. AAPG Bulletin, 95(7), 1257-1291
  • [93] Hakimi, M.H., Al-Matary, A.M. and Ahmed, A.., (2017). Bulk geochemical characteristics and carbon isotope composition of oils from the Sayhut sub-basin in the Gulf of Aden with emphasis on organic matter input, age and maturity. Egyptian Journal of Petroleum, https://doi.org/10.1016/j.ejpe.2017.06.002
  • [94] Nettleton, L.L., (1976). Gravity and Magnetics in Oil Prospecting. McGraw-Hill, 464 p.
  • [95] Aydın, A., (1997). Gravite Verilerinin Normalize Edilmiş Tam Gradyan, Varyasyon ve İstatistik Yöntemleri ile Hidrokarbon Açısından Değerlendirilmesi, Model Çalışmalar ve Hasankale-Horasan (Erzurum) Havzasına Uygulanması. Karadeniz Teknik Üniversitesi, Doktora Tezi, 151 s.
  • [96] Aydın, A., (2004). Gravite anomalilerinin doğrudan yorum yöntemleri ile değerlendirilmesi: Hasankale-Horasan bölgesinden bir uygulama. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 11(1), 95-102
  • [97] Gadirov, V.G., Eppelbaum, L.V., Kuderavets, R.S., Menshov, O.I., and Gadirov, K.V., (2018). Indicative features of local magnetic anomalies from hydrocarbon deposits: examples from Azerbaijan and Ukraine, Acta Geophysica, doi: 10.1007/s11600-018-0224-0
  • [98] Gadirov, V.G. and Eppelbaum, L.V., (2012). Detailed gravity, magnetics successful in exploring Azerbaijan onshore areas. Oil and Gas Journal, 5, 60-73
  • [99] Gadirov, V.G., (1994). The physical-geological principles of application of gravity and magnetic prospecting in searching oil and gas deposits. Proceed. of 10th Petroleum Congress and Exhibition of Turkey, Ankara, pp. 197-20
  • [100] Geist, E.L., Childs, J.R., and Scholl, D.W., (1987). Evolution and petroleum geology of Amlia and Amukta intra-arc summit basins, Aleutian Ridge. Marine and Petroleum Geology, 4, 334-352
  • [101] Lyatsky, H.V., Thurston, J.B., Brown, R.J. and Lyatsky, V.B., (1992). Hydrocarbon exploration applications of potential field horizontal gradient vector maps. Canadian Society of Exploration Geophysicists Recorder, 17(9), 10-15
  • [102] Piskarev, A.L. and Tchernyshev, M.Y., (1997). Magnetic and gravity anomaly patterns related to hydrocarbon fields in northern West Siberia. Geophysics, 62(3), 831-841
  • [103] Satyana, A.H., (2015). Subvolcanic hydrocarbon prospectivity of Java: Opportunities and challenges. Proceedings, Indonesian Petroleum Association. Thirty-Ninth Annual Convention & Exhibition, May 2015. IPA15-G-105
  • [104] Stephen, O.I. and Iduma, U., (2018). Hydrocarbon potential of Nigeria’s Inland Basin: Case study of Afikpo basin. Journal of Applied Geology and Geophysics, 6(4), 1-24
  • [105] Eke, P.O. and Okeke, F.N., (2016). Identification of hydrocarbon regions in Southern Niger Delta Basin of Nigeria from potential field data. International Journal of Scientific and Technology Research, 5(11), 96-99
  • [106] Svancara, J., (1983). Approximate method for direct interpretation of gravity anomalies caused by surface three‐dimensional geologic structures. Geophysics, 48(3), 361-366, https://doi.org/10.1190/1.1441474
  • [107] Töpfer, K.D., (1977). Improved technique for rapid interpretation of gravity anomalies caused by two-dimensional sedimentary basins. Journal of Geophysics, 43, 645-654 (in Švancara, J., 1983. Approximate method for direct interpretation of gravity anomalies caused by surface three‐dimensional geologic structures. Geophysics, 48(3), 361-366, https://doi.org/10.1190/1.1441474)
  • [108] Festa, A., Pini, G.A., Dilek, Y. and Codegone, G., (2010). Mélanges and mélange-forming processes: a historical overview and new concepts. International Geology Review, 52(10-12), 1040-1105
  • [109] Özdemir, A., Palabıyık, Y., (2020). Petrol ve doğalgaz kaynak kayası, ofiyolitler, manto sorgucu ve toplu yokolma arasındaki ilişkilere göre Türkiye’nin petrol ve doğalgaz potansiyeli. 4. Uluslararası Bilimsel Çalışmalar Kongresi, 28-30 Eylül 2020 (baskıda)
  • [110] Özdemir, A. ve Palabıyık, Y., (2020). Türkiye'nin Paleozoyik - Miyosen jeolojik zaman aralığındaki petrol ve doğalgaz kaynak kaya varlığının paleocoğrafik ve paleotektonik veriler ışığında kapsamlı bir değerlendirmesi. Avrupa Bilim ve Teknoloji Dergisi (baskıda)
  • [111] Beccaletto, L., (2003). Geology, correlations, and geodynamic evolution of the Biga Peninsula (NW Turkey). Université de Lausanne, PhD Thesis, 140 p.
  • [112] Yiğit, O., (2009). Mineral deposits of Turkey in relation to Tethyan Metallogeny: Implications for future mineral exploration. Economic Geology, 104, 19-51
  • [113] İnan, A., (1982). Azerbaycan’ın çamur volkanları. Yeryuvarı ve İnsan, 7(1), 4-5
  • [114] Guliev, I.S., Mamedov, P.Z., Feyzullayev, A.A., Huseynov, D.A. Kadirov, F.A., Aliyeva, E.H.-M. and Tagiyev, M.F., 2003. Hydrocarbon Systems of the South Caspian Basin. Baku, Nafta-Press, 206 p.
  • [115] Guliev, I.S. and Feizullayev, A.A., (1996). Geochemistry of hydrocarbon seepages in Azerbaijan. in D. Schumacher and M. A. Abrams, eds., Hydrocarbon migration and its near-surface expression: AAPG Memoir 66, 63-70
  • [116] López-Rodríguez, C., Stadnitskaia, A., De Lange, G.J., Martínez-Ruíz, F., Comas, M., and Sinninghe Damsté, J.S., (2014). Origin of lipid biomarkers in mud volcanoes from the Alboran Sea, western Mediterranean. Biogeosciences, 11, 3187-3204
  • [117] Mazzini, A. and Etiope, G., (2017). Mud volcanism: An updated review. Earth-Science Reviews, Earth-Science Reviews, 168, 81-112
  • [118] Mazzini, M., Svensen, H., Planke, S., Guliyev, I., Akhmanov, G.G., Fallik, T. and Banks. D., (2009). When mud volcanoes sleep: Insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan. Marine and Petroleum Geology, 26,1704-1715
  • [119] Oppo, D., Capozzi, R., Nigarov, A. and Esenov, P., (2014). Mud volcanism and fluid geochemistry in the Cheleken Peninsula, Western Turkmenistan. Marine and Petroleum Geology, 57, 122-134
  • [120] Oppo, D. and Capozzi, R., (2016). Spatial association of mud volcano and sandstone intrusions, Boyadag Anticline, Western Turkmenistan. Basin Research, 28(6), 827-839
  • [121] Planke, S., Svensen, H., Hovland, M., Banks, D.A. and Jamtveit, B., (2003). Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Mar. Lett. 23, 258-268
  • [122] Stadnitskaia, A., Blinova, V., Ivanov, M.K., Baas, M., Hopmans, E., van Weering, T.C.E., and Sinninghe Damste, J.S., (2007). Lipid biomarkers in sediments of mud volcanoes from the Sorokin Trough, NE Black Sea: Probable source strata for the erupted material. Organic Geochemistry, 38, 67-83
  • [123] Özdemir, A., Palabiyik, A. ve Karataş., A., (2020). Türkiye Denizlerinin Petrol ve Doğalgaz Potansiyeli, Gelecek Hidrokarbon Araştırmaları için Hedef Alanlar ve Sondaj Lokasyonları. Enerji Araştırmaları (Editör: Neşeli, S.), İksad Yayınevi, 53-123
  • [124] Nakada, R., Takahashi, Y., Tsunogai, U., Zheng, G., Hiroshi Shimizu, H., and Hattori, K.H., (2011). A geochemical study on mud volcanoes in the Junggar Basin, China. Applied Geochemistry, 26(7), 1065-1076
  • [125] Tassi, F., Bonini, M., Montegrossi, G., Capecchiacci, F., Capaccioni, B., Vaselli, O., (2012). Origin of light hydrocarbons in gases from mud volcanoes and CH4-rich emissions. Chemical Geology, 294-295, 113-12
  • [126] Alizadeh, A.A., Guliyev, I.S., Kadirov, F.A., and Eppelbaum, L.V., (2017). Mud Volcanism. in Geosciences of Azerbaijan Volume I: Geology. Springer, 215-233
  • [127] Babadi, M.F., Mehrabi, B., Tassi, F., Cabassi, J., Pecchioni, E., Shakeri, A., and Vaselli, O., (2020). Geochemistry of fluids discharged from mud volcanoes in SE Caspian Sea (Gorgan Plain, Iran). International Geology Review, https://doi.org/10.1080/00206814.2020.1716400
  • [128] Bonini, M., Tassi, F., Feyzullayev, A.A., Aliyev, C.S., Capecchiacci, F., and Minissale, A., (2013). Deep gases discharged from mud volcanoes of Azerbaijan: New geochemical evidence. Marine and Petroleum Geology, 43 450-463
There are 128 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Adil Özdemir 0000-0002-3975-2846

Atilla Karataş 0000-0001-9159-6804

Yildiray Palabıyık 0000-0002-6452-2858

Alperen Şahinoğlu 0000-0002-1930-6574

Project Number SOS-A-100719-0267
Publication Date August 31, 2021
Submission Date September 24, 2020
Acceptance Date February 23, 2021
Published in Issue Year 2021

Cite

APA Özdemir, A., Karataş, A., Palabıyık, Y., Şahinoğlu, A. (2021). Efemçukuru Altın Yatağının Bulunduğu Seferihisar Yükselimi’nin (İzmir) Petrol ve Doğalgaz Potansiyelinin Suda Toplam Petrol Hidrokarbonları (TPH) Analizi ve Gravite-Manyetik Verilerle İncelenmesi. ALKÜ Fen Bilimleri Dergisi, 3(2), 1-28. https://doi.org/10.46740/alku.799387
AMA Özdemir A, Karataş A, Palabıyık Y, Şahinoğlu A. Efemçukuru Altın Yatağının Bulunduğu Seferihisar Yükselimi’nin (İzmir) Petrol ve Doğalgaz Potansiyelinin Suda Toplam Petrol Hidrokarbonları (TPH) Analizi ve Gravite-Manyetik Verilerle İncelenmesi. ALKÜ Fen Bilimleri Dergisi. August 2021;3(2):1-28. doi:10.46740/alku.799387
Chicago Özdemir, Adil, Atilla Karataş, Yildiray Palabıyık, and Alperen Şahinoğlu. “Efemçukuru Altın Yatağının Bulunduğu Seferihisar Yükselimi’nin (İzmir) Petrol Ve Doğalgaz Potansiyelinin Suda Toplam Petrol Hidrokarbonları (TPH) Analizi Ve Gravite-Manyetik Verilerle İncelenmesi”. ALKÜ Fen Bilimleri Dergisi 3, no. 2 (August 2021): 1-28. https://doi.org/10.46740/alku.799387.
EndNote Özdemir A, Karataş A, Palabıyık Y, Şahinoğlu A (August 1, 2021) Efemçukuru Altın Yatağının Bulunduğu Seferihisar Yükselimi’nin (İzmir) Petrol ve Doğalgaz Potansiyelinin Suda Toplam Petrol Hidrokarbonları (TPH) Analizi ve Gravite-Manyetik Verilerle İncelenmesi. ALKÜ Fen Bilimleri Dergisi 3 2 1–28.
IEEE A. Özdemir, A. Karataş, Y. Palabıyık, and A. Şahinoğlu, “Efemçukuru Altın Yatağının Bulunduğu Seferihisar Yükselimi’nin (İzmir) Petrol ve Doğalgaz Potansiyelinin Suda Toplam Petrol Hidrokarbonları (TPH) Analizi ve Gravite-Manyetik Verilerle İncelenmesi”, ALKÜ Fen Bilimleri Dergisi, vol. 3, no. 2, pp. 1–28, 2021, doi: 10.46740/alku.799387.
ISNAD Özdemir, Adil et al. “Efemçukuru Altın Yatağının Bulunduğu Seferihisar Yükselimi’nin (İzmir) Petrol Ve Doğalgaz Potansiyelinin Suda Toplam Petrol Hidrokarbonları (TPH) Analizi Ve Gravite-Manyetik Verilerle İncelenmesi”. ALKÜ Fen Bilimleri Dergisi 3/2 (August 2021), 1-28. https://doi.org/10.46740/alku.799387.
JAMA Özdemir A, Karataş A, Palabıyık Y, Şahinoğlu A. Efemçukuru Altın Yatağının Bulunduğu Seferihisar Yükselimi’nin (İzmir) Petrol ve Doğalgaz Potansiyelinin Suda Toplam Petrol Hidrokarbonları (TPH) Analizi ve Gravite-Manyetik Verilerle İncelenmesi. ALKÜ Fen Bilimleri Dergisi. 2021;3:1–28.
MLA Özdemir, Adil et al. “Efemçukuru Altın Yatağının Bulunduğu Seferihisar Yükselimi’nin (İzmir) Petrol Ve Doğalgaz Potansiyelinin Suda Toplam Petrol Hidrokarbonları (TPH) Analizi Ve Gravite-Manyetik Verilerle İncelenmesi”. ALKÜ Fen Bilimleri Dergisi, vol. 3, no. 2, 2021, pp. 1-28, doi:10.46740/alku.799387.
Vancouver Özdemir A, Karataş A, Palabıyık Y, Şahinoğlu A. Efemçukuru Altın Yatağının Bulunduğu Seferihisar Yükselimi’nin (İzmir) Petrol ve Doğalgaz Potansiyelinin Suda Toplam Petrol Hidrokarbonları (TPH) Analizi ve Gravite-Manyetik Verilerle İncelenmesi. ALKÜ Fen Bilimleri Dergisi. 2021;3(2):1-28.