Research Article
BibTex RIS Cite

On Some Properties of m  -Statistical Convergence in a Paranormed Space

Year 2019, Volume: 1 Issue: 1, 40 - 47, 15.01.2019

Abstract

In this study, we introduce the concepts of strongly   m  ,p -Cesàro summability, m  -statistical Cauchy sequence and m  -statistical convergence in a paronormed space. We give some certain properties of these concepts and some inclusion relations between them. Fast [1] and Steinhaus [2] introduced the concept of statistical convergence for sequences of real numbers. Several authors studied this concept with related topics [3-5]. The asymptotic density of K N  is defined as,   (K) lim k n : k K  n     where be a subset of the set of natural numbers and denoted by  K. . indicates the cardinality of the enclosed set. A sequence xk  is called statistically covergent to provided that  k  n lim k n х L 0  n       for each  0 . It is denoted by lim k st x L    . A sequence хk  is called statistically Cauchy sequence provided that there exist a number N N( )   such that

References

  • 1. Fast, H., Sur la convergence statistique, Colloq. Math., 2, 241-244 (1951)
  • 2. Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2, 73-74 (1951)
  • 3. Fridy, J. A., On statistical convergence, Analysis, 5, 301-313 (1985)
  • 4. Šalát, T., On statisticaly convergent sequences of real numbers, Math Slovaca, 30, 139-150 (1980)
  • 5. Kolk, E., The Statistical convergence in Banach spaces, Tartu Ül. Toimetised, 928, 41-52 (1991)
  • 6. Alotaibi, A., Alroqi, M. A., Statistical convergence in a paranormed space, J. Inequal. Appl., 2012, 2012:39, 6 pp.
  • 7. Nakano, H., Concave modulars, J. Math. Soc. Japan 5(1953), 29-49.
  • 8. Mohammed, A., Mursaleen, M., λ-statistical convergence in paranormed space, Abstr. Appl. Anal. 2013, Art. ID 264520, 5 pp.
  • 9. Çolak, R., Bektaş, Ç. A., Altınok, H., Ercan, S., On inclusion relations between some sequence spaces, Int. J. Anal. 2016, Art. ID 7283527, 4 pp.
  • 10. Ercan, S., Altın, Y., Bektaş, Ç., On weak lambda-Statistical convergence of order alpha, U.P.B. Sci. Bull., Series A, 80(2), 215-226 (2018)
  • 11. Et, M., Çolak, R., On some generalized difference sequence spaces, Soochow Journal of Mathematics, 21(4) 377-386 (1995).
  • 12. Ercan, S., Bektaş, Ç., Some generalized difference sequence spaces of non absolute type, General Mahematics Notes, 27(2), 37-46 (2015).
  • 13. F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monograph, İstanbul-2012, ISBN: 978-1-60805-420-6.
  • 14. Ercan, S., Some Cesàro-type summability and statistical convergence of sequences generated by fractional difference operator, AKU J. Sci. Eng., 18 (2018) 011302 (125-130)

On Some Properties of m  -Statistical Convergence in a Paranormed Space

Year 2019, Volume: 1 Issue: 1, 40 - 47, 15.01.2019

Abstract

In this study, we introduce the concepts of strongly  ($\Delta ^{m}$,p)-Cesàro summability,  $\Delta ^{m}-statistical Cauchy sequence and  $\Delta ^{m}-statistical convergence in a paronormed space. We give some certain properties of these concepts and some inclusion relations between them.

References

  • 1. Fast, H., Sur la convergence statistique, Colloq. Math., 2, 241-244 (1951)
  • 2. Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2, 73-74 (1951)
  • 3. Fridy, J. A., On statistical convergence, Analysis, 5, 301-313 (1985)
  • 4. Šalát, T., On statisticaly convergent sequences of real numbers, Math Slovaca, 30, 139-150 (1980)
  • 5. Kolk, E., The Statistical convergence in Banach spaces, Tartu Ül. Toimetised, 928, 41-52 (1991)
  • 6. Alotaibi, A., Alroqi, M. A., Statistical convergence in a paranormed space, J. Inequal. Appl., 2012, 2012:39, 6 pp.
  • 7. Nakano, H., Concave modulars, J. Math. Soc. Japan 5(1953), 29-49.
  • 8. Mohammed, A., Mursaleen, M., λ-statistical convergence in paranormed space, Abstr. Appl. Anal. 2013, Art. ID 264520, 5 pp.
  • 9. Çolak, R., Bektaş, Ç. A., Altınok, H., Ercan, S., On inclusion relations between some sequence spaces, Int. J. Anal. 2016, Art. ID 7283527, 4 pp.
  • 10. Ercan, S., Altın, Y., Bektaş, Ç., On weak lambda-Statistical convergence of order alpha, U.P.B. Sci. Bull., Series A, 80(2), 215-226 (2018)
  • 11. Et, M., Çolak, R., On some generalized difference sequence spaces, Soochow Journal of Mathematics, 21(4) 377-386 (1995).
  • 12. Ercan, S., Bektaş, Ç., Some generalized difference sequence spaces of non absolute type, General Mahematics Notes, 27(2), 37-46 (2015).
  • 13. F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monograph, İstanbul-2012, ISBN: 978-1-60805-420-6.
  • 14. Ercan, S., Some Cesàro-type summability and statistical convergence of sequences generated by fractional difference operator, AKU J. Sci. Eng., 18 (2018) 011302 (125-130)
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Çiğdem Bektaş

Emine Özçelik This is me

Publication Date January 15, 2019
Submission Date August 31, 2018
Acceptance Date December 3, 2018
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

APA Bektaş, Ç., & Özçelik, E. (2019). On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi, 1(1), 40-47.
AMA Bektaş Ç, Özçelik E. On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi. January 2019;1(1):40-47.
Chicago Bektaş, Çiğdem, and Emine Özçelik. “On Some Properties of M  -Statistical Convergence in a Paranormed Space”. ALKÜ Fen Bilimleri Dergisi 1, no. 1 (January 2019): 40-47.
EndNote Bektaş Ç, Özçelik E (January 1, 2019) On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi 1 1 40–47.
IEEE Ç. Bektaş and E. Özçelik, “On Some Properties of m  -Statistical Convergence in a Paranormed Space”, ALKÜ Fen Bilimleri Dergisi, vol. 1, no. 1, pp. 40–47, 2019.
ISNAD Bektaş, Çiğdem - Özçelik, Emine. “On Some Properties of M  -Statistical Convergence in a Paranormed Space”. ALKÜ Fen Bilimleri Dergisi 1/1 (January 2019), 40-47.
JAMA Bektaş Ç, Özçelik E. On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi. 2019;1:40–47.
MLA Bektaş, Çiğdem and Emine Özçelik. “On Some Properties of M  -Statistical Convergence in a Paranormed Space”. ALKÜ Fen Bilimleri Dergisi, vol. 1, no. 1, 2019, pp. 40-47.
Vancouver Bektaş Ç, Özçelik E. On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi. 2019;1(1):40-7.