Mg/Al-NO3 Çift Tabakalı Hidroksit Nanopartiküllerinin Hidrotermal İşlem İle Optimizasyonu Çalışmaları
Year 2023,
Volume: 5 Issue: 3, 163 - 175, 27.12.2023
Kevser Bal
,
Sema Şentürk
,
Özlem Kaplan
,
Mehmet Koray Gök
,
Saadet Kevser Pabuccuoğlu
Abstract
Çift Tabakalı Hidroksitler yüksek biyouyumluluk ve düşük sitotoksisite ile biyolojik uygulamalarda önemli avantajlar sunar. Bu çalışmada nanopartiküller (nMg/Al-NO3-LDH) birlikte çöktürme yöntemiyle sentezlendi ve nanopartiküllerin sentez optimizasyonu hidrotermal işlem altında gerçekleştirildi. Hidrotermal işlemin partikül boyutu ve yüzey yükü üzerindeki etkisi değerlendirildi. Deneyler 80˚C ve 100˚C'de, 2-48 saat aralığında ve çeşitli karıştırma hızlarında 250, 1000, 1500 rpm gerçekleştirildi. Nanopartiküllerin partikül boyutu (nm), polidispersite indeksi (PDI) ve zeta potansiyel (mV) değerleri Dinamik Işık Saçılımı (DLS) ile saptandı. Nanopartiküllerin kimyasal yapısı Fourier Dönüşümü Kızılötesi spektrometresi (FTIR) ile karakterize edildi. Sonuç olarak, 80˚C, 48 saat ve 250 rpm'de optimum partikül boyutu 86.87 nm, polidispersite indeksi (PDI) 0.132 ve zeta potansiyeli (mV) 44.4±8.74 olan nanopartiküller elde edildi. Veriler, biyolojik uygulamalarda kullanıma yönelik Mg/Al-NO3-LDH nanopartiküllerinin uygun fiziksel özelliklere sahip olduğunu gösterdi.
References
- [1] Kameliya J., Verma A., Dutta P., Arora C., Vyas S., Varma R.S. (2023). "Layered Double Hydroxide Materials: A Review on Their Preparation, Characterization, and Applications." Inorganics 11, 121
- [2] Gama B., Selvasembian R., Giannakoudakis D.A., Triantafyllidis K.S., McKay G., Meili L. (2022). "Layered Double Hydroxides as Rising-Star Adsorbents for Water Purification: A Brief Discussion." Molecules 27. 10.3390/molecules27154900
- [3] Constantino V.R.L., Figueiredo M.P., Magri V.R., Eulálio D., Cunha V.R.R., Alcântara A.C.S., Perotti G.F. (2023). "Biomaterials Based on Organic Polymers and Layered Double Hydroxides Nanocomposites: Drug Delivery and Tissue Engineering." Pharmaceutics 15. 10.3390/pharmaceutics15020413
- [4] Choy J.-H., Jung J.-S., Oh J.-M., Park M., Jeong J., Kang Y.-K., Han O.-J. (2004). "Layered double hydroxide as an efficient drug reservoir for folate derivatives." Biomaterials 25, 3059-3064. https://doi.org/10.1016/j.biomaterials.2003.09.083
- [5] Mohanambe L., Vasudevan S. (2005). "Anionic clays containing anti-inflammatory drug molecules: Comparison of molecular dynamics simulation and measurements." The Journal of Physical Chemistry B 109, 15651-15658
- [6] Li L., Gu W., Chen J., Chen W., Xu Z.P. (2014). "Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles." Biomaterials 35, 3331-3339. https://doi.org/10.1016/j.biomaterials.2013.12.095
- [7] Kura A.U., Ain N.M., Hussein M.Z., Fakurazi S., Hussein-Al-Ali S.H. (2014). "Toxicity and metabolism of layered double hydroxide intercalated with levodopa in a Parkinson's disease model." Int J Mol Sci 15, 5916-5927. 10.3390/ijms15045916
- [8] Wong Y., Markham K., Xu Z.P., Chen M., Max Lu G.Q., Bartlett P.F., Cooper H.M. (2010). "Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles." Biomaterials 31, 8770-8779. 10.1016/j.biomaterials.2010.07.077
- [9] Chen C., Wang P., Lim T.-T., Liu L., Liu S., Xu R. (2013). "A facile synthesis of monodispersed hierarchical layered double hydroxide on silica spheres for efficient removal of pharmaceuticals from water." Journal of Materials Chemistry A 1, 3877-3880. 10.1039/C3TA10197E
- [10] Janani F.Z., Taoufik N., Khiar H., Boumya W., Elhalil A., Sadiq M., Puga A.V., Barka N. (2021). "Nanostructured layered double hydroxides based photocatalysts: Insight on synthesis methods, application in water decontamination/splitting and antibacterial activity." Surfaces and Interfaces 25, 101263. https://doi.org/10.1016/j.surfin.2021.101263
- [11] Özgümüş S., Gök M.K., Bal A., Güçlü G. (2013). "Study on novel exfoliated polyampholyte nanocomposite hydrogels based on acrylic monomers and Mg–Al–Cl layered double hydroxide: Synthesis and characterization." Chemical Engineering Journal 223, 277-286. https://doi.org/10.1016/j.cej.2013.02.098
- [12] Mishra G., Dash B., Pandey S. (2018). "Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials." Applied Clay Science 153, 172-186. https://doi.org/10.1016/j.clay.2017.12.021
- [13] Liu L., Deng Q., White P., Dong S., Cole I.S., Dong J., Chen X.-B. (2022). "Hydrothermally prepared layered double hydroxide coatings for corrosion protection of Mg alloys – a critical review." Corrosion Communications 8, 40-48. https://doi.org/10.1016/j.corcom.2022.07.001
- [14] He C., Hu Y., Yin L., Tang C., Yin C. (2010). "Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles." Biomaterials 31, 3657-3666. https://doi.org/10.1016/j.biomaterials.2010.01.065
- [15] Ladewig K., Xu Z.P., Lu G.Q. (2009). "Layered double hydroxide nanoparticles in gene and drug delivery." Expert Opin Drug Deliv 6, 907-922. 10.1517/17425240903130585
- [16] Costa F.R., Leuteritz A., Wagenknecht U., Jehnichen D., Häußler L., Heinrich G. (2008). "Intercalation of Mg–Al layered double hydroxide by anionic surfactants: Preparation and characterization." Applied Clay Science 38, 153-164. https://doi.org/10.1016/j.clay.2007.03.006
- [17] Molano-Mendoza M., Donneys-Victoria D., Marriaga-Cabrales N., Angel Mueses M., Puma G.L., Machuca-Martínez F. (2019). "Dataset on infrared spectroscopy and X-ray diffraction patterns of Mg-Al layered double hydroxides by the electrocoagulation technique." Data Brief 27, 104564. 10.1016/j.dib.2019.104564
- [18] Jin S., Ye K. (2007). "Nanoparticle-mediated drug delivery and gene therapy." Biotechnol Prog 23, 32-41. 10.1021/bp060348j
- [19] Xu Z.P., Stevenson G., Lu C.-Q., Lu G.Q. (2006). "Dispersion and Size Control of Layered Double Hydroxide Nanoparticles in Aqueous Solutions." The Journal of Physical Chemistry B 110, 16923-16929. 10.1021/jp062281o
- [20] Harrison R., Li L., Gu Z., Xu Z.P. (2017). "Controlling mesoporous silica-coating of layered double hydroxide nanoparticles for drug control release." Microporous and Mesoporous Materials 238, 97-104. https://doi.org/10.1016/j.micromeso.2016.04.031
- [21] Zhang L.-x., Xie X.-x., Liu D.-q., Xu Z.P., Liu R.-t. (2018). "Efficient co-delivery of neo-epitopes using dispersion-stable layered double hydroxide nanoparticles for enhanced melanoma immunotherapy." Biomaterials 174, 54-66. https://doi.org/10.1016/j.biomaterials.2018.05.015
- [22] Zuo H., Gu Z., Cooper H., Xu Z.P. (2015). "Crosslinking to enhance colloidal stability and redispersity of layered double hydroxide nanoparticles." J Colloid Interface Sci 459, 10-16. 10.1016/j.jcis.2015.07.063
- [23] Dong H., Parekh H.S., Xu Z.P. (2015). "Particle size- and number-dependent delivery to cells by layered double hydroxide nanoparticles." Journal of Colloid and Interface Science 437, 10-16. https://doi.org/10.1016/j.jcis.2014.09.010
- [24] Musumeci A.W., Mortimer G.M., Butler M.K., Xu Z.P., Minchin R.F., Martin D.J. (2010). "Fluorescent layered double hydroxide nanoparticles for biological studies." Applied Clay Science 48, 271-279. https://doi.org/10.1016/j.clay.2009.11.008
- [25] Bilati U., Allémann E., Doelker E. (2005). "Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles." European Journal of Pharmaceutical Sciences 24, 67-75. https://doi.org/10.1016/j.ejps.2004.09.011
- [26] Choi G., Piao H., Kim M.H., Choy J.-H. (2016). "Enabling Nanohybrid Drug Discovery through the Soft Chemistry Telescope." Industrial & Engineering Chemistry Research 55, 11211-11224. 10.1021/acs.iecr.6b02971
- [27] Dong H., Chen M., Rahman S., Parekh H.S., Cooper H.M., Xu Z.P. (2014). "Engineering small MgAl-layered double hydroxide nanoparticles for enhanced gene delivery." Applied Clay Science 100, 66-75. https://doi.org/10.1016/j.clay.2014.04.028
- [28] Cao Z., Adnan N.N.M., Wang G., Rawal A., Shi B., Liu R., Liang K., Zhao L., Gooding J.J., Boyer C., Gu Z. (2018). "Enhanced colloidal stability and protein resistance of layered double hydroxide nanoparticles with phosphonic acid-terminated PEG coating for drug delivery." J Colloid Interface Sci 521, 242-251. 10.1016/j.jcis.2018.03.006
- [29] Persano F., Batasheva S., Fakhrullina G., Gigli G., Leporatti S., Fakhrullin R. (2021). "Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders." Journal of Materials Chemistry B 9, 2756-2784. 10.1039/D0TB02957B
- [30] Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M.R. (2018). "Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems." Pharmaceutics 10. 10.3390/pharmaceutics10020057
- [31] Qin L., Wang W., You S., Dong J., Zhou Y., Wang J. (2014). "In vitro antioxidant activity and in vivo antifatigue effect of layered double hydroxide nanoparticles as delivery vehicles for folic acid." Int J Nanomedicine 9, 5701-5710. 10.2147/ijn.S74306
- [32] Bhattacharjee S. (2016). "DLS and zeta potential – What they are and what they are not?" Journal of Controlled Release 235, 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017
- [33] Xu R. (2008). "Progress in nanoparticles characterization: Sizing and zeta potential measurement." Particuology 6, 112-115. https://doi.org/10.1016/j.partic.2007.12.002
- [34] Xu Z.P., Jin Y., Liu S., Hao Z.P., Lu G.Q. (2008). "Surface charging of layered double hydroxides during dynamic interactions of anions at the interfaces." J Colloid Interface Sci 326, 522-529. 10.1016/j.jcis.2008.06.062
- [35] Zhang Y., Evans J.R.G. (2012). "Alignment of layered double hydroxide platelets." Colloids and Surfaces A: Physicochemical and Engineering Aspects 408, 71-78. https://doi.org/10.1016/j.colsurfa.2012.05.033
Optimization Studies of Mg/Al-NO3 Layered Double Hydroxide Nanoparticles by Hydrothermal Treatment
Year 2023,
Volume: 5 Issue: 3, 163 - 175, 27.12.2023
Kevser Bal
,
Sema Şentürk
,
Özlem Kaplan
,
Mehmet Koray Gök
,
Saadet Kevser Pabuccuoğlu
Abstract
Layered Double Hydroxides based nanoparticles offer significant advantages in biological applications with high biocompatibility and low cytotoxicity. In this study, nanoparticles (nMg/Al-NO3-LDH) were synthesized by the co-precipitation method and synthesis optimization of the nanoparticles was carried out by hydrothermal treatment. The effect of hydrothermal treatment on Z-average and surface charge was evaluated. Experiments were performed at 80˚C and 100˚C during in the range of 2-48 h by using different stirring rates (250, 1000, and 1500 rpm) and without stirring. Dynamic Light Scattering (DLS) was used to assess the particle size (nm), polydispersity index (PDI), and zeta potential (mV) of the nanoparticles. The chemical structure of nanoparticles was characterized by Fourier Transform Infrared spectrometry (FTIR). As a result, nanoparticles with an optimum particle size of 86.87 nm, a PDI of 0.132 and a zeta potential (mV) of 44.4±8.74 were obtained at 80˚C, 48h and 250 rpm. The data showed that Mg/Al-NO3-LDH nanoparticles have suitable physical properties for biological applications.
References
- [1] Kameliya J., Verma A., Dutta P., Arora C., Vyas S., Varma R.S. (2023). "Layered Double Hydroxide Materials: A Review on Their Preparation, Characterization, and Applications." Inorganics 11, 121
- [2] Gama B., Selvasembian R., Giannakoudakis D.A., Triantafyllidis K.S., McKay G., Meili L. (2022). "Layered Double Hydroxides as Rising-Star Adsorbents for Water Purification: A Brief Discussion." Molecules 27. 10.3390/molecules27154900
- [3] Constantino V.R.L., Figueiredo M.P., Magri V.R., Eulálio D., Cunha V.R.R., Alcântara A.C.S., Perotti G.F. (2023). "Biomaterials Based on Organic Polymers and Layered Double Hydroxides Nanocomposites: Drug Delivery and Tissue Engineering." Pharmaceutics 15. 10.3390/pharmaceutics15020413
- [4] Choy J.-H., Jung J.-S., Oh J.-M., Park M., Jeong J., Kang Y.-K., Han O.-J. (2004). "Layered double hydroxide as an efficient drug reservoir for folate derivatives." Biomaterials 25, 3059-3064. https://doi.org/10.1016/j.biomaterials.2003.09.083
- [5] Mohanambe L., Vasudevan S. (2005). "Anionic clays containing anti-inflammatory drug molecules: Comparison of molecular dynamics simulation and measurements." The Journal of Physical Chemistry B 109, 15651-15658
- [6] Li L., Gu W., Chen J., Chen W., Xu Z.P. (2014). "Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles." Biomaterials 35, 3331-3339. https://doi.org/10.1016/j.biomaterials.2013.12.095
- [7] Kura A.U., Ain N.M., Hussein M.Z., Fakurazi S., Hussein-Al-Ali S.H. (2014). "Toxicity and metabolism of layered double hydroxide intercalated with levodopa in a Parkinson's disease model." Int J Mol Sci 15, 5916-5927. 10.3390/ijms15045916
- [8] Wong Y., Markham K., Xu Z.P., Chen M., Max Lu G.Q., Bartlett P.F., Cooper H.M. (2010). "Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles." Biomaterials 31, 8770-8779. 10.1016/j.biomaterials.2010.07.077
- [9] Chen C., Wang P., Lim T.-T., Liu L., Liu S., Xu R. (2013). "A facile synthesis of monodispersed hierarchical layered double hydroxide on silica spheres for efficient removal of pharmaceuticals from water." Journal of Materials Chemistry A 1, 3877-3880. 10.1039/C3TA10197E
- [10] Janani F.Z., Taoufik N., Khiar H., Boumya W., Elhalil A., Sadiq M., Puga A.V., Barka N. (2021). "Nanostructured layered double hydroxides based photocatalysts: Insight on synthesis methods, application in water decontamination/splitting and antibacterial activity." Surfaces and Interfaces 25, 101263. https://doi.org/10.1016/j.surfin.2021.101263
- [11] Özgümüş S., Gök M.K., Bal A., Güçlü G. (2013). "Study on novel exfoliated polyampholyte nanocomposite hydrogels based on acrylic monomers and Mg–Al–Cl layered double hydroxide: Synthesis and characterization." Chemical Engineering Journal 223, 277-286. https://doi.org/10.1016/j.cej.2013.02.098
- [12] Mishra G., Dash B., Pandey S. (2018). "Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials." Applied Clay Science 153, 172-186. https://doi.org/10.1016/j.clay.2017.12.021
- [13] Liu L., Deng Q., White P., Dong S., Cole I.S., Dong J., Chen X.-B. (2022). "Hydrothermally prepared layered double hydroxide coatings for corrosion protection of Mg alloys – a critical review." Corrosion Communications 8, 40-48. https://doi.org/10.1016/j.corcom.2022.07.001
- [14] He C., Hu Y., Yin L., Tang C., Yin C. (2010). "Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles." Biomaterials 31, 3657-3666. https://doi.org/10.1016/j.biomaterials.2010.01.065
- [15] Ladewig K., Xu Z.P., Lu G.Q. (2009). "Layered double hydroxide nanoparticles in gene and drug delivery." Expert Opin Drug Deliv 6, 907-922. 10.1517/17425240903130585
- [16] Costa F.R., Leuteritz A., Wagenknecht U., Jehnichen D., Häußler L., Heinrich G. (2008). "Intercalation of Mg–Al layered double hydroxide by anionic surfactants: Preparation and characterization." Applied Clay Science 38, 153-164. https://doi.org/10.1016/j.clay.2007.03.006
- [17] Molano-Mendoza M., Donneys-Victoria D., Marriaga-Cabrales N., Angel Mueses M., Puma G.L., Machuca-Martínez F. (2019). "Dataset on infrared spectroscopy and X-ray diffraction patterns of Mg-Al layered double hydroxides by the electrocoagulation technique." Data Brief 27, 104564. 10.1016/j.dib.2019.104564
- [18] Jin S., Ye K. (2007). "Nanoparticle-mediated drug delivery and gene therapy." Biotechnol Prog 23, 32-41. 10.1021/bp060348j
- [19] Xu Z.P., Stevenson G., Lu C.-Q., Lu G.Q. (2006). "Dispersion and Size Control of Layered Double Hydroxide Nanoparticles in Aqueous Solutions." The Journal of Physical Chemistry B 110, 16923-16929. 10.1021/jp062281o
- [20] Harrison R., Li L., Gu Z., Xu Z.P. (2017). "Controlling mesoporous silica-coating of layered double hydroxide nanoparticles for drug control release." Microporous and Mesoporous Materials 238, 97-104. https://doi.org/10.1016/j.micromeso.2016.04.031
- [21] Zhang L.-x., Xie X.-x., Liu D.-q., Xu Z.P., Liu R.-t. (2018). "Efficient co-delivery of neo-epitopes using dispersion-stable layered double hydroxide nanoparticles for enhanced melanoma immunotherapy." Biomaterials 174, 54-66. https://doi.org/10.1016/j.biomaterials.2018.05.015
- [22] Zuo H., Gu Z., Cooper H., Xu Z.P. (2015). "Crosslinking to enhance colloidal stability and redispersity of layered double hydroxide nanoparticles." J Colloid Interface Sci 459, 10-16. 10.1016/j.jcis.2015.07.063
- [23] Dong H., Parekh H.S., Xu Z.P. (2015). "Particle size- and number-dependent delivery to cells by layered double hydroxide nanoparticles." Journal of Colloid and Interface Science 437, 10-16. https://doi.org/10.1016/j.jcis.2014.09.010
- [24] Musumeci A.W., Mortimer G.M., Butler M.K., Xu Z.P., Minchin R.F., Martin D.J. (2010). "Fluorescent layered double hydroxide nanoparticles for biological studies." Applied Clay Science 48, 271-279. https://doi.org/10.1016/j.clay.2009.11.008
- [25] Bilati U., Allémann E., Doelker E. (2005). "Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles." European Journal of Pharmaceutical Sciences 24, 67-75. https://doi.org/10.1016/j.ejps.2004.09.011
- [26] Choi G., Piao H., Kim M.H., Choy J.-H. (2016). "Enabling Nanohybrid Drug Discovery through the Soft Chemistry Telescope." Industrial & Engineering Chemistry Research 55, 11211-11224. 10.1021/acs.iecr.6b02971
- [27] Dong H., Chen M., Rahman S., Parekh H.S., Cooper H.M., Xu Z.P. (2014). "Engineering small MgAl-layered double hydroxide nanoparticles for enhanced gene delivery." Applied Clay Science 100, 66-75. https://doi.org/10.1016/j.clay.2014.04.028
- [28] Cao Z., Adnan N.N.M., Wang G., Rawal A., Shi B., Liu R., Liang K., Zhao L., Gooding J.J., Boyer C., Gu Z. (2018). "Enhanced colloidal stability and protein resistance of layered double hydroxide nanoparticles with phosphonic acid-terminated PEG coating for drug delivery." J Colloid Interface Sci 521, 242-251. 10.1016/j.jcis.2018.03.006
- [29] Persano F., Batasheva S., Fakhrullina G., Gigli G., Leporatti S., Fakhrullin R. (2021). "Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders." Journal of Materials Chemistry B 9, 2756-2784. 10.1039/D0TB02957B
- [30] Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., Khorasani S., Mozafari M.R. (2018). "Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems." Pharmaceutics 10. 10.3390/pharmaceutics10020057
- [31] Qin L., Wang W., You S., Dong J., Zhou Y., Wang J. (2014). "In vitro antioxidant activity and in vivo antifatigue effect of layered double hydroxide nanoparticles as delivery vehicles for folic acid." Int J Nanomedicine 9, 5701-5710. 10.2147/ijn.S74306
- [32] Bhattacharjee S. (2016). "DLS and zeta potential – What they are and what they are not?" Journal of Controlled Release 235, 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017
- [33] Xu R. (2008). "Progress in nanoparticles characterization: Sizing and zeta potential measurement." Particuology 6, 112-115. https://doi.org/10.1016/j.partic.2007.12.002
- [34] Xu Z.P., Jin Y., Liu S., Hao Z.P., Lu G.Q. (2008). "Surface charging of layered double hydroxides during dynamic interactions of anions at the interfaces." J Colloid Interface Sci 326, 522-529. 10.1016/j.jcis.2008.06.062
- [35] Zhang Y., Evans J.R.G. (2012). "Alignment of layered double hydroxide platelets." Colloids and Surfaces A: Physicochemical and Engineering Aspects 408, 71-78. https://doi.org/10.1016/j.colsurfa.2012.05.033