Research Article
BibTex RIS Cite
Year 2023, , 183 - 192, 31.12.2023
https://doi.org/10.17093/alphanumeric.1402897

Abstract

References

  • Daraghmeh, M., Agarwal, A., Manzano, R., & Zaman, M. (2021, 14-23 June 2021). Time Series Forecasting using Facebook Prophet for Cloud Resource Management. 2021 IEEE International Conference on Communications Workshops (ICC Workshops),
  • Erturk, M. A., & Vollero, L. (2020, 13-17 July 2020). GSP for Virtual Sensors in eHealth Applications. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC),
  • Fahim, M., Sharma, V., Cao, T. V., Canberk, B., & Duong, T. Q. (2022). Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines. IEEE Access, 10, 14184-14194. https://doi.org/10.1109/ACCESS.2022.3147602
  • Ivanov, S., Nikolskaya, K., Radchenko, G., Sokolinsky, L., & Zymbler, M. (2020, 17-19 Nov. 2020). Digital Twin of City: Concept Overview. 2020 Global Smart Industry Conference (GloSIC),
  • Jalali, S. M. J., Ahmadian, S., Kavousi-Fard, A., Khosravi, A., & Nahavandi, S. (2022). Automated Deep CNN-LSTM Architecture Design for Solar Irradiance Forecasting. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(1), 54-65. https://doi.org/10.1109/TSMC.2021.3093519
  • Jha, B. K., & Pande, S. (2021, 8-10 April 2021). Time Series Forecasting Model for Supermarket Sales using FB-Prophet. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC),
  • Liao, S., Wu, J., Bashir, A. K., Yang, W., Li, J., & Tariq, U. (2022). Digital Twin Consensus for Blockchain-Enabled Intelligent Transportation Systems in Smart Cities. IEEE Transactions on Intelligent Transportation Systems, 23(11), 22619-22629. https://doi.org/10.1109/TITS.2021.3134002
  • Oeschger, G., Carroll, P., & Caulfield, B. (2020). Micromobility and public transport integration: The current state of knowledge. Transportation Research Part D: Transport and Environment, 89, 102628. https://doi.org/https://doi.org/10.1016/j.trd.2020.102628
  • Sabatini, A., & Vollero, L. (2022, 27 June-1 July 2022). Graph Signal Processing for IoT Sensor Networks. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC),
  • Taylor Sj, L. B. (2017). Forecasting at scale. PeerJ Preprints 5:e3190v2. https://doi.org/10.7287/peerj.preprints.3190v2
  • Toharudin, T., Pontoh, R. S., Caraka, R. E., Zahroh, S., Lee, Y., & Chen, R. C. (2023). Employing long short-term memory and Facebook prophet model in air temperature forecasting. Communications in Statistics - Simulation and Computation, 52(2), 279-290. https://doi.org/10.1080/03610918.2020.1854302
  • Tzachor, A., Sabri, S., Richards, C. E., Rajabifard, A., & Acuto, M. (2022). Potential and limitations of digital twins to achieve the Sustainable Development Goals. Nature Sustainability, 5(10), 822-829. https://doi.org/10.1038/s41893-022-00923-7
  • Wang, Z., Gupta, R., Han, K., Wang, H., Ganlath, A., Ammar, N., & Tiwari, P. (2022). Mobility Digital Twin: Concept, Architecture, Case Study, and Future Challenges. IEEE Internet of Things Journal, 9(18), 17452-17467. https://doi.org/10.1109/JIOT.2022.3156028

Time Series Prediction with Digital Twins in Public Transportation Systems

Year 2023, , 183 - 192, 31.12.2023
https://doi.org/10.17093/alphanumeric.1402897

Abstract

Classical traffic and transportation control centres are becoming insufficient with the rapid spread of electric, intelligent, autonomous, and software-defined vehicles. Existing traffic management strategies have significant drawbacks in public safety, predictive maintenance, tuning the core functionality of vehicles, and managing mobility. We can renovate this system with next-generation intelligent Digital Twin (DT) technologies. This research proposes a timeseries prediction system through Digital Twins to manage public transportation system with Facebook’s Prophet. This study presents a model framework to build Digital Twin application in Intelligent Public Transportation Systems and used a public data set to validate model with Facebook’s Prophet library by forecasting metro lines usage. Obtained results presented in the study and it is shown that forecasting error interms of Mean Absolute Percentage Error (MAPE) is 0.017 for 1 day horizon.

References

  • Daraghmeh, M., Agarwal, A., Manzano, R., & Zaman, M. (2021, 14-23 June 2021). Time Series Forecasting using Facebook Prophet for Cloud Resource Management. 2021 IEEE International Conference on Communications Workshops (ICC Workshops),
  • Erturk, M. A., & Vollero, L. (2020, 13-17 July 2020). GSP for Virtual Sensors in eHealth Applications. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC),
  • Fahim, M., Sharma, V., Cao, T. V., Canberk, B., & Duong, T. Q. (2022). Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines. IEEE Access, 10, 14184-14194. https://doi.org/10.1109/ACCESS.2022.3147602
  • Ivanov, S., Nikolskaya, K., Radchenko, G., Sokolinsky, L., & Zymbler, M. (2020, 17-19 Nov. 2020). Digital Twin of City: Concept Overview. 2020 Global Smart Industry Conference (GloSIC),
  • Jalali, S. M. J., Ahmadian, S., Kavousi-Fard, A., Khosravi, A., & Nahavandi, S. (2022). Automated Deep CNN-LSTM Architecture Design for Solar Irradiance Forecasting. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(1), 54-65. https://doi.org/10.1109/TSMC.2021.3093519
  • Jha, B. K., & Pande, S. (2021, 8-10 April 2021). Time Series Forecasting Model for Supermarket Sales using FB-Prophet. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC),
  • Liao, S., Wu, J., Bashir, A. K., Yang, W., Li, J., & Tariq, U. (2022). Digital Twin Consensus for Blockchain-Enabled Intelligent Transportation Systems in Smart Cities. IEEE Transactions on Intelligent Transportation Systems, 23(11), 22619-22629. https://doi.org/10.1109/TITS.2021.3134002
  • Oeschger, G., Carroll, P., & Caulfield, B. (2020). Micromobility and public transport integration: The current state of knowledge. Transportation Research Part D: Transport and Environment, 89, 102628. https://doi.org/https://doi.org/10.1016/j.trd.2020.102628
  • Sabatini, A., & Vollero, L. (2022, 27 June-1 July 2022). Graph Signal Processing for IoT Sensor Networks. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC),
  • Taylor Sj, L. B. (2017). Forecasting at scale. PeerJ Preprints 5:e3190v2. https://doi.org/10.7287/peerj.preprints.3190v2
  • Toharudin, T., Pontoh, R. S., Caraka, R. E., Zahroh, S., Lee, Y., & Chen, R. C. (2023). Employing long short-term memory and Facebook prophet model in air temperature forecasting. Communications in Statistics - Simulation and Computation, 52(2), 279-290. https://doi.org/10.1080/03610918.2020.1854302
  • Tzachor, A., Sabri, S., Richards, C. E., Rajabifard, A., & Acuto, M. (2022). Potential and limitations of digital twins to achieve the Sustainable Development Goals. Nature Sustainability, 5(10), 822-829. https://doi.org/10.1038/s41893-022-00923-7
  • Wang, Z., Gupta, R., Han, K., Wang, H., Ganlath, A., Ammar, N., & Tiwari, P. (2022). Mobility Digital Twin: Concept, Architecture, Case Study, and Future Challenges. IEEE Internet of Things Journal, 9(18), 17452-17467. https://doi.org/10.1109/JIOT.2022.3156028
There are 13 citations in total.

Details

Primary Language English
Subjects Management Information Systems
Journal Section Articles
Authors

Mehmet Ali Ertürk 0000-0002-4030-1110

Publication Date December 31, 2023
Submission Date December 10, 2023
Acceptance Date December 31, 2023
Published in Issue Year 2023

Cite

APA Ertürk, M. A. (2023). Time Series Prediction with Digital Twins in Public Transportation Systems. Alphanumeric Journal, 11(2), 183-192. https://doi.org/10.17093/alphanumeric.1402897

Alphanumeric Journal is hosted on DergiPark, a web based online submission and peer review system powered by TUBİTAK ULAKBIM.

Alphanumeric Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License