Price Forecasting of Feed Raw Materials Used in Dairy Farming: A Methodological Comparison
Year 2024,
, 249 - 280, 31.12.2024
Merve Kılınç Yılmaz
,
Yusuf Şahin
,
Kenan Oğuzhan Oruç
Abstract
Milk is among the products of strategic importance for countries due to its nutritional value and being a priority foodstuff. Feed raw materials are one of the most important input items in the dairy cattle sector. Ensuring the balance of milk/feed parity is of great importance for producers to maintain their activities and profitability. In countries like Turkey, where inflationary effects are observed, the prices of feed raw materials are not stable. In an environment of high price fluctuations, forecasting feed raw material prices for producers is of vital importance for future planning. In this study, price forecasting of 43 feed raw materials, which are used extensively in the ration preparation process in the dairy cattle sector, was carried out. The performances of 11 methods based on Time Series, Statistics and Grey System Theory are compared. After the comparison using model success criteria, it was found that the DGM (1,1) method forecasts more effectively than Exponential Smoothing and Regression models as well as other Grey Forecasting models. Based on MAD, MSE and MAPE values, it is concluded that Grey Forecasting methods can be a good alternative for price forecasting of feed ingredients.
Ethical Statement
This study is derived from Merve Kılınç Yılmaz's PhD thesis titled " Developing a Decision Support System for the Determination of Minimum Cost Ration Preparation Cost in the Livestock Sector".
Supporting Institution
Burdur Mehmet Akif Ersoy Üniversitesi
References
- Ahumada, H., & Cornejo, M. (2016). Forecasting food prices: The case of corn, soybeans and wheat. International Journal of Forecasting, 32(3), 838–848. https://doi.org/10.1016/j.ijforecast.2016.01.002
- Akan, B., & Baylan, E. B. (2022). Box-Jenkins yöntemiyle çilek satış fiyatları için tahmin modelikurulması ve tahmin sonuçlarının değerlendirilmesi. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 21(42), 211–234. https://doi.org/10.55071/ticaretfbd.1092970
- Akdemir, H. A., & Çebi, Y. (2023). Tarımsal Ürünlerin İhracat Fiyatlarının Tahminlenmesinde Yapay Sinir Ağlarının Kullanım. 15. Ulusal Tarım Ekonomisi Kongresi, 306–309.
- Aksoy, E., & Gençtürk, M. (2024). COVID-19 Döneminde Banka Kredi Risk Bilgileri Üzerine Bir Analiz. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 26(1), 194–206. https://doi.org/10.32709/akusosbil.1109545
- Anggraeni, W., Andri, K. B., Sumaryanto, & Mahananto, F. (2017). The Performance of ARIMAX Model and Vector Autoregressive (VAR) Model in Forecasting Strategic Commodity Price in Indonesia. Procedia Computer Science, 124, 189–196. https://doi.org/10.1016/j.procs.2017.12.146
- Arsy, F. A. (2021). Demand Forecasting of Toyota Avanza Cars in Indonesia: Grey Systems Approach. International Journal of Grey Systems, 1(1), 38–47. https://doi.org/10.52812/ijgs.24
- Atıcı, E., & Elen, A. (2024). Optimization of Feed Ration Cost in Dairy Cattle by Genetic Algorithm. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 6(1), 65–76. https://doi.org/10.46387/bjesr.1435749
- Aydemir, E., & Turhan, T. (2022). Comparison of Grey Incidence Degrees of Selected Stock Indices According to BIST100 Index in the Covid19 Pandemic Process. 1st International Conference on Engineering and Applied Natural Sciences, 10–13.
- Aydın, S., Çetinkaya, A., & Bayrakçı, E. (2010, ). Kars İlinde Üretilen İnek Sütlerinin Bazı Kimyasal Özellikleri. Ulusal Meslek Yüksekokulları Öğrenci Sempozyumu.
- Bas, E., Egrioglu, E., & Yolcu, U. (2021). Bootstrapped Holt Method with Autoregressive Coefficients Based on Harmony Search Algorithm. Forecasting, 3(4), 839–849. https://doi.org/10.3390/forecast3040050
- Bessler, D. A., Yang, J., & Wongcharupan, M. (2003). Price Dynamics in the International Wheat Market: Modeling with Error Correction and Directed Acyclic Graphs. Journal of Regional Science, 43(1), 1–33. https://doi.org/10.1111/1467-9787.00287
- Beşel, C., & Kayıkçı, E. T. (2016). Interpretation of meteorological data with time series and descriptive statistics; Black Sea Region example. TÜCAUM Uluslararası Coğrafya Sempozyumu, 13–14.
- Bocsi, V., Hajnalka, F., & Pusztai, G. (2022). First-generation Students at Universities from the Aspect of Achievement, Motivation and Integration. Revija Za Sociologiju, 52(1), 61–85. https://doi.org/10.5613/rzs.52.1.3
- Brandt, J. A., & Bessler, D. A. (1984). Forecasting with Vector Autoregressions versus a Univariate ARIMA Process: An Empirical Example with U.S. Hog Prices. North Central Journal of Agricultural Economics, 6(2), 29. https://doi.org/10.2307/1349248
- Cahyo, P. W., Aesyi, U. S., & Santosa, B. D. (2024). Topic Sentiment Using Logistic Regression and Latent Dirichlet Allocation as a Customer Satisfaction Analysis Model. JURNAL INFOTEL, 16(1). https://doi.org/10.20895/infotel.v16i1.1081
- Can, Ş., & Gerşil, M. (2018). Manisa Pamuk Fiyatlarının Zaman Serisi Analizi ve Yapay Sinir Ağı Teknikleri İle Tahminlenmesi Ve Tahmin Performanslarının Karşılaştırılması. Yönetim Ve Ekonomi, 25(3), 1017–1031.
- Chen, J., Chen, C., Lin, Y., Su, Y., Yu, X., Jiang, Y., Chen, Z., Ke, S., Lin, S., Chen, L., Zhang, Z., & Zhang, T. (2021). Downregulation of SUMO2 inhibits hepatocellular carcinoma cell proliferation, migration and invasion. FEBS Open Bio, 11(6), 1771–1784. https://doi.org/10.1002/2211-5463.13173
- Dang, H.-S., Huang, Y.-F., Wang, C.-N., & Nguyen, T.-M.-T. (2016). An Application of the Short-Term Forecasting with Limited Data in the Healthcare Traveling Industry. Sustainability, 8(10), 1037. https://doi.org/10.3390/su8101037
- Dong, Z., & Sun, F. (2011). A novel DGM (1, 1) model for consumer price index forecasting. Proceedings of 2011 IEEE International Conference on Grey Systems and Intelligent Services, 303–307. https://doi.org/10.1109/gsis.2011.6044084
- Erdoğan, M. A. (2021). Türkiye'de şeftali fiyatlarının analizi ve fiyatların Box-Jenkins yöntemiyle tahmini [Bursa Uludağ University]. http://hdl.handle.net/11452/21704
- Es, H. A. (2020). Gri Tahmin Modelleri ile Toplam Enerji Talep Tahmini: Türkiye Örneği. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. https://doi.org/10.17714/gumusfenbil.676909
- Fan, G.-F., Wang, A., & Hong, W.-C. (2018). Combining Grey Model and Self-Adapting Intelligent Grey Model with Genetic Algorithm and Annual Share Changes in Natural Gas Demand Forecasting. Energies, 11(7), 1625. https://doi.org/10.3390/en11071625
- Ferbar Tratar, L. (2015). Forecasting method for noisy demand. International Journal of Production Economics, 161, 64–73. https://doi.org/10.1016/j.ijpe.2014.11.019
- Groebner, D. F., Shannon, P. W., & Fry, P. C. (2018). Business statistics: a decision-making approach (Tenth edition). Pearson.
- Gülerce, M., & Ünal, G. (2017). Forecasting of Oil and Agricultural Commodity Prices: VARMA Versus ARMA. Annals of Financial Economics, 12(3), 1750012. https://doi.org/10.1142/s2010495217500129
- Hanke, J., & Wichern, D. (2014). Business Forecasting. Pearson Education.
- Hasan, M. B., & Dhali, M. N. (2017). Determination of Optimal Smoothing Constants for Exponential Smoothing Method & Holt's Method. Dhaka University Journal of Science, 65(1), 55–59. https://doi.org/10.3329/dujs.v65i1.54509
- Hu, Y.-C., & Jiang, P. (2017). Forecasting energy demand using neural-network-based grey residual modification models. Journal of the Operational Research Society, 68(5), 556–565. https://doi.org/10.1057/s41274-016-0130-2
- Huang, K. Y., & Jane, C.-J. (2009). A hybrid model for stock market forecasting and portfolio selection based on ARX, grey system and RS theories. Expert Systems with Applications, 36(3), 5387–5392. https://doi.org/10.1016/j.eswa.2008.06.103
- Iqelan, B. M. (2017). Forecasts of female breast cancer referrals using grey prediction model GM(1,1). Applied Mathematical Sciences, 11, 2647–2662. https://doi.org/10.12988/ams.2017.79273
- Javed, S. A., Ikram, M., Tao, L., & Liu, S. (2020). Forecasting key indicators of China's inbound and outbound tourism: optimistic–pessimistic method. Grey Systems: Theory and Application, 11(2), 265–287. https://doi.org/10.1108/gs-12-2019-0064
- Jha, S. N., Jaiswal, P., Narsaiah, K., Kumar, R., Sharma, R., Gupta, M., Bhardwaj, R., & Singh, A. K. (2013). Authentication of Mango Varieties Using Near-Infrared Spectroscopy. Agricultural Research, 2(3), 229–235. https://doi.org/10.1007/s40003-013-0068-4
- Jia, W. (2024). Research on pricing and replenishment strategy of superstore goods based on linear regression and gray prediction models. Highlights in Business, Economics and Management, 24, 18–24. https://doi.org/10.54097/6eztb071
- Ju-Long, D. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288–294. https://doi.org/10.1016/s0167-6911(82)80025-x
- Kayacan, E., Ulutas, B., & Kaynak, O. (2010). Grey system theory-based models in time series prediction. Expert Systems with Applications, 37(2), 1784–1789. https://doi.org/10.1016/j.eswa.2009.07.064
- Khairina, D. M., Muaddam, A., Maharani, S., & Rahmania, H. (2019). Forecasting of Groundwater Tax Revenue Using Single Exponential Smoothing Method. E3s Web of Conferences, 125, 23006. https://doi.org/10.1051/e3sconf/201912523006
- Kling, J. L., & Bessler, D. A. (1985). A comparison of multivariate forecasting procedures for economic time series. International Journal of Forecasting, 1(1), 5–24. https://doi.org/10.1016/s0169-2070(85)80067-4
- Kohzadi, N., Boyd, M. S., Kermanshahi, B., & Kaastra, I. (1996). A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing, 10(2), 169–181. https://doi.org/10.1016/0925-2312(95)00020-8
- Kutlar, A. (1998). Introduction to Computer Applied Econometrics. Beta Press.
- Kuzu Yıldırım, S. (2021). Analysis of Mobile Banking Data with R (1st ed.). Dora Publishing.
- Küçükoflaz, M., Akçay, A., Çelik, E., & Sarıozkan, S. (2019). Türkiye'de kırmızı et ve süt fiyatlarının Box-Jenkins modeller ile geleceğe yönelik kestirimleri. Veteriner Hekimler Derneği Dergisi, 90(2), 122–131. https://doi.org/10.33188/vetheder.534469
- Li, B., Yang, W., & Li, X. (2018). Application of combined model with DGM(1,1) and linear regression in grain yield prediction. Grey Systems: Theory and Application, 8(1), 25–34. https://doi.org/10.1108/gs-07-2017-0020
- Li, J., Wang, Y., Li, J., & Jiang, R. (2023). Forecasting the Impact of the COVID-19 Outbreak on China's Cotton Exports by Modified Discrete Grey Model with Limited Data. AATCC Journal of Research, 247234442211479. https://doi.org/10.1177/24723444221147966
- Lin, Y., & Liu, S. A historical introduction to grey systems theory. 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04ch37583), 3, 2403–2408. https://doi.org/10.1109/icsmc.2004.1400689
- Liu, S., & Forrest, J. Y.-L. (2010). Grey Systems: Theory and Applications. Springer Verlag.
- Liu, S., & Yang, Y. (2017). Explanation of terms of grey forecasting models. Grey Systems: Theory and Application, 7(1), 123–128. https://doi.org/10.1108/gs-11-2016-0047
- Liu, Y., & Li, K. (2019). Research on House Price Forecast Based on Grey System GM (1, 1). 5th International Conference on Finance, Investment, And Law (ICFIL 2019), 200–206.
- Manalu, A., Roito, D., Rizkiadina, E., & Laia, Y. (2022). Analysis Forecasting Sales With Single Exponential Smoothing Method. Paradigma - Jurnal Komputer Dan Informatika, 24(2), 135–138. https://doi.org/10.31294/paradigma.v24i2.1255
- Manickam, A., Indrakala, S., & Kumar, P. (2023). A Novel Mathematical Study on the Predictions of Volatile Price of Gold Using Grey Models. Contemporary Mathematics, 270–285. https://doi.org/10.37256/cm.4220232389
- Norouzi, N., & Fani, M. (2020). Black gold falls, black plague arise - An Opec crude oil price forecast using a gray prediction model. Upstream Oil and Gas Technology, 5, 100015. https://doi.org/10.1016/j.upstre.2020.100015
- Oladipo, S., Sun, Y., & Adeleke, O. (2023). An Improved Particle Swarm Optimization and Adaptive Neuro-Fuzzy Inference System for Predicting the Energy Consumption of University Residence. International Transactions on Electrical Energy Systems, 2023, 1–16. https://doi.org/10.1155/2023/8508800
- Ostertagová, E. (2012). Modelling using Polynomial Regression. Procedia Engineering, 48, 500–506. https://doi.org/10.1016/j.proeng.2012.09.545
- P. Vatcheva, K., & Lee, M. (2016). Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. Epidemiology: Open Access, 6(2). https://doi.org/10.4172/2161-1165.1000227
- Petmezas, G., Cheimariotis, G.-A., Stefanopoulos, L., Rocha, B., Paiva, R. P., Katsaggelos, A. K., & Maglaveras, N. (2022). Automated Lung Sound Classification Using a Hybrid CNN-LSTM Network and Focal Loss Function. Sensors, 22(3), 1232. https://doi.org/10.3390/s22031232
- Ramadhan, A. S., Prabowo, A., Kankarofi, R. H., & Sulaiman, I. M. (2023). Forecasting Human Development Index With Double Exponential Smoothing Method And Acorrect Determination. International Journal of Business, Economics, And Social Development, 4(1), 25–31. https://doi.org/10.46336/ijbesd.v4i1.375
- Rathnayaka, R. K. T., & Seneviratna, D. (2019). Taylor series approximation and unbiased GM(1,1) based hybrid statistical approach for forecasting daily gold price demands. Grey Systems: Theory and Application, 9(1), 5–18. https://doi.org/10.1108/gs-08-2018-0032
- Shahwan, T., & Odening, M. (2017). Forecasting Agricultural Commodity Prices using Hybrid Neural Networks. In Computational Intelligence in Economics and Finance (pp. 63–74). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-72821-4\_3
- Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39–42. https://doi.org/10.12691/ajams-8-2-1
- Singh, P. K., Pandey, A. K., & Bose, S. C. (2022). A new grey system approach to forecast closing price of Bitcoin, Bionic, Cardano, Dogecoin, Ethereum, XRP Cryptocurrencies. Quality & Quantity, 57(3), 2429–2446. https://doi.org/10.1007/s11135-022-01463-0
- Soysal, M., & Ömürgönülşen, M. (2010). Türk turizm sektöründe talep tahmini üzerine bir uygulama. Anatolia: Turizm Araştırmaları Dergisi, 21(1), 128–136.
- Sukardi, S., Anisa, A. Y., & Herha, S. K. N. (2023). Application of the Single Exponential Smoothing Method For Flood Disaster Prediction. Journal of Computer Networks, Architecture and High Performance Computing, 5(2), 515–525. https://doi.org/10.47709/cnahpc.v5i2.2455
- Taylor, J. W. (2003). Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting, 19(4), 715–725. https://doi.org/10.1016/s0169-2070(03)00003-7
- Temuçin, T., & Temiz, İ. (2016). Türkiye Dış Ticaret İhracat Hacminin Projeksiyonu: Holt-Winters ve Box-Jenkins Modellerinin Kıyaslanması. Süleyman Demirel Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 21(3), 937–960.
- Tulkinov, S. (2023). Grey forecast of electricity production from coal and renewable sources in the USA, Japan and China. Grey Systems: Theory and Application, 13(3), 517–543. https://doi.org/10.1108/gs-10-2022-0107
- Wang, C.-N., & Le, A. P. (2019). Application of Multi-Criteria Decision-Making Model and GM (1,1) Theory for Evaluating Efficiency of FDI on Economic Growth: A Case Study in Developing Countries. Sustainability, 11(8), 2389. https://doi.org/10.3390/su11082389
- Weng, Y., Wang, X., Hua, J., Wang, H., Kang, M., & Wang, F.-Y. (2019). Forecasting Horticultural Products Price Using ARIMA Model and Neural Network Based on a Large-Scale Data Set Collected by Web Crawler. IEEE Transactions on Computational Social Systems, 6(3), 547–553. https://doi.org/10.1109/tcss.2019.2914499
- Wu, L., & Wang, Y. (2009). Modelling DGM(1,1) under the Criterion of the Minimization of Mean Absolute Percentage Error. 2009 Second International Symposium on Knowledge Acquisition and Modeling, 123–126. https://doi.org/10.1109/kam.2009.175
- Wu, W.-Z., Jiang, J., & Li, Q. (2019). A Novel Discrete Grey Model and Its Application. Mathematical Problems in Engineering, 2019(1). https://doi.org/10.1155/2019/9623878
- Xu, X., & Zhang, Y. (2021). Corn cash price forecasting with neural networks. Computers and Electronics in Agriculture, 184, 106120. https://doi.org/10.1016/j.compag.2021.106120
- Xu, Z., Lin, C., Zhuang, Z., & Wang, L. (2023). Research on Multistage Dynamic Trading Model Based on Gray Model and Auto-Regressive Integrated Moving Average Model. Discrete Dynamics in Nature and Society, 2023, 1–15. https://doi.org/10.1155/2023/1552074
- Yamak, R., & Erkan, E. (2021). Kripto Para Getirilerinde Haftanın Gün Etkisi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 25(3), 1356–1372. https://doi.org/10.53487/ataunisosbil.883979
- Yang, X., Zou, J., Kong, D., & Jiang, G. (2018). The analysis of GM (1, 1) grey model to predict the incidence trend of typhoid and paratyphoid fevers in Wuhan City, China. Medicine, 97(34), e11787. https://doi.org/10.1097/md.0000000000011787
- Yapar, G., Taylan Selamlar, H., Capar, S., & Yavuz, İ. (2019). ATA Method. Hacettepe Journal of Mathematics and Statistics, 48(6), 1838–1844. https://doi.org/10.15672/hujms.461032
- Yu, L. (2019). Adaptive Variable Weight Accumulation AVWA-DGM(1,1) Model Based on Particle Swarm Optimization. Journal of Advances in Mathematics and Computer Science, 1–17. https://doi.org/10.9734/jamcs/2019/v32i430150
- Yıldırım, B. F., & Kesintürk, T. (2015). Kredi Kartı Kullanım İstatistiklerinin Gri Tahmin ve Genetik Algoritma Tabanlı Gri Tahmin Metodu İle Tahmini: Karşılaştırmalı Analiz. Bankacılar, 26(94), 65–80.
- Yıldız, M., & Atış, E. (2019). Estimation of Turkey's organic fig export price using the ARMA method. Journal of Agricultural Economics, 25(2), 141–147.
- Zhang, D., & Luo, D. (2022). Evaluation of regional agricultural drought vulnerability based on unbiased generalized grey relational closeness degree. Grey Systems: Theory and Application, 12(4), 839–856. https://doi.org/10.1108/GS-12-2021-0187
- Zhao, Y., Xie, Q., & Zhang, Y. (2021). Assessment and Prediction for China's Regional Agricultural Sustainability. E3s Web of Conferences, 228, 2007. https://doi.org/10.1051/e3sconf/202122802007
- Zhou, W., & Ding, S. (2021). A novel discrete grey seasonal model and its applications. Communications in Nonlinear Science and Numerical Simulation, 93, 105493. https://doi.org/10.1016/j.cnsns.2020.105493
- Zong, J., & Zhu, Q. (2012). Price forecasting for agricultural products based on BP and RBF Neural Network. 2012 IEEE International Conference on Computer Science and Automation Engineering, 607–610. https://doi.org/10.1109/icsess.2012.6269540
- Zou, H., Xia, G., Yang, F., & Wang, H. (2007). An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting. Neurocomputing, 70(16–18), 2913–2923. https://doi.org/10.1016/j.neucom.2007.01.009
- Çuhadar, M. (2006). Turizm sektöründe talep tahmini için yapay sinir ağları kullanımı ve diğer yöntemlerle karşılaştırmalı analizi (Antalya ilinin dış turizm talebinde uygulama). Süleyman Demirel University.
- Ömürbek, V., Aksoy, E., & Akçakanat, Ö. (2018). Bankaların Grup Bazlı Karlılıklarının Gri Tahmin Yontemi Ile Deg\uerlendirilmesi. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 10(23), 75–89. https://doi.org/10.20875/makusobed.375038
- Özdemir, M., & Çılgın, C. (2022). Buğday Fiyatının Öngörümlenmesinde Makine Öğrenmesi ve Zaman Serisi Tahmin Modellerinin Performanslarının Karşılaştırılması. In M. Özcan (Ed.), 21. Yüzyılda İktisadı Anlamak : Güncel Ekonometrik Zaman Serileri Çalışmaları. Gazi Kitabevi.
- Özden, C. (2023). İstatistiksel ve Derin Öğrenme Yöntemlerini Kullanarak Tarımsal Girdi Fiyat Endeksi'nin Tahmin Edilmesi. Turkish Journal of Agriculture - Food Science and Technology, 11(9), 1751–1755. https://doi.org/10.24925/turjaf.v11i9.1751-1755.6359
- Özen, N. S., Saraç, S., & Koyuncu, M. (2021). COVID-19 Vakalarının Makine Öğrenmesi Algoritmaları ile Tahmini: Amerika Birleşik Devletleri Örneği. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.855113
- Şahin, E. E., & Bağcı, B. (2020). Kripto Para Fiyatlarının Tahmininde Gri Sistem Teorisi: Yöntemsel Karşılaştırma. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 20(1), 219–232. https://doi.org/10.18037/ausbd.700349
- Şahin, U. (2018). Forecasting of Turkey's electricity generation and consumption with grey prediction method. Mugla Journal of Science and Technology, 4(2), 205–209. https://doi.org/10.22531/muglajsci.450307
- Şahin, Y., & Aydemir, E. (2019). Akıllı Telefon Teknik Özellik Önem Derecelerinin AHP Ağırlıklı Gri İlişkisel Analizi Yöntemi İle Belirlenmesi. Eskişehir Osmangazi Üniversitesi İktisadi Ve İdari Bilimler Dergisi, 14(1), 225–238. https://doi.org/10.17153/oguiibf.486920
- Şahin, Y., & Kılınç, M. (2022). Analysis of Economic and Epidemic Performances of Countries During the Covid-19 Pandemic Period. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(2), 729–747. https://doi.org/10.29130/dubited.934715
Year 2024,
, 249 - 280, 31.12.2024
Merve Kılınç Yılmaz
,
Yusuf Şahin
,
Kenan Oğuzhan Oruç
References
- Ahumada, H., & Cornejo, M. (2016). Forecasting food prices: The case of corn, soybeans and wheat. International Journal of Forecasting, 32(3), 838–848. https://doi.org/10.1016/j.ijforecast.2016.01.002
- Akan, B., & Baylan, E. B. (2022). Box-Jenkins yöntemiyle çilek satış fiyatları için tahmin modelikurulması ve tahmin sonuçlarının değerlendirilmesi. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 21(42), 211–234. https://doi.org/10.55071/ticaretfbd.1092970
- Akdemir, H. A., & Çebi, Y. (2023). Tarımsal Ürünlerin İhracat Fiyatlarının Tahminlenmesinde Yapay Sinir Ağlarının Kullanım. 15. Ulusal Tarım Ekonomisi Kongresi, 306–309.
- Aksoy, E., & Gençtürk, M. (2024). COVID-19 Döneminde Banka Kredi Risk Bilgileri Üzerine Bir Analiz. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 26(1), 194–206. https://doi.org/10.32709/akusosbil.1109545
- Anggraeni, W., Andri, K. B., Sumaryanto, & Mahananto, F. (2017). The Performance of ARIMAX Model and Vector Autoregressive (VAR) Model in Forecasting Strategic Commodity Price in Indonesia. Procedia Computer Science, 124, 189–196. https://doi.org/10.1016/j.procs.2017.12.146
- Arsy, F. A. (2021). Demand Forecasting of Toyota Avanza Cars in Indonesia: Grey Systems Approach. International Journal of Grey Systems, 1(1), 38–47. https://doi.org/10.52812/ijgs.24
- Atıcı, E., & Elen, A. (2024). Optimization of Feed Ration Cost in Dairy Cattle by Genetic Algorithm. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 6(1), 65–76. https://doi.org/10.46387/bjesr.1435749
- Aydemir, E., & Turhan, T. (2022). Comparison of Grey Incidence Degrees of Selected Stock Indices According to BIST100 Index in the Covid19 Pandemic Process. 1st International Conference on Engineering and Applied Natural Sciences, 10–13.
- Aydın, S., Çetinkaya, A., & Bayrakçı, E. (2010, ). Kars İlinde Üretilen İnek Sütlerinin Bazı Kimyasal Özellikleri. Ulusal Meslek Yüksekokulları Öğrenci Sempozyumu.
- Bas, E., Egrioglu, E., & Yolcu, U. (2021). Bootstrapped Holt Method with Autoregressive Coefficients Based on Harmony Search Algorithm. Forecasting, 3(4), 839–849. https://doi.org/10.3390/forecast3040050
- Bessler, D. A., Yang, J., & Wongcharupan, M. (2003). Price Dynamics in the International Wheat Market: Modeling with Error Correction and Directed Acyclic Graphs. Journal of Regional Science, 43(1), 1–33. https://doi.org/10.1111/1467-9787.00287
- Beşel, C., & Kayıkçı, E. T. (2016). Interpretation of meteorological data with time series and descriptive statistics; Black Sea Region example. TÜCAUM Uluslararası Coğrafya Sempozyumu, 13–14.
- Bocsi, V., Hajnalka, F., & Pusztai, G. (2022). First-generation Students at Universities from the Aspect of Achievement, Motivation and Integration. Revija Za Sociologiju, 52(1), 61–85. https://doi.org/10.5613/rzs.52.1.3
- Brandt, J. A., & Bessler, D. A. (1984). Forecasting with Vector Autoregressions versus a Univariate ARIMA Process: An Empirical Example with U.S. Hog Prices. North Central Journal of Agricultural Economics, 6(2), 29. https://doi.org/10.2307/1349248
- Cahyo, P. W., Aesyi, U. S., & Santosa, B. D. (2024). Topic Sentiment Using Logistic Regression and Latent Dirichlet Allocation as a Customer Satisfaction Analysis Model. JURNAL INFOTEL, 16(1). https://doi.org/10.20895/infotel.v16i1.1081
- Can, Ş., & Gerşil, M. (2018). Manisa Pamuk Fiyatlarının Zaman Serisi Analizi ve Yapay Sinir Ağı Teknikleri İle Tahminlenmesi Ve Tahmin Performanslarının Karşılaştırılması. Yönetim Ve Ekonomi, 25(3), 1017–1031.
- Chen, J., Chen, C., Lin, Y., Su, Y., Yu, X., Jiang, Y., Chen, Z., Ke, S., Lin, S., Chen, L., Zhang, Z., & Zhang, T. (2021). Downregulation of SUMO2 inhibits hepatocellular carcinoma cell proliferation, migration and invasion. FEBS Open Bio, 11(6), 1771–1784. https://doi.org/10.1002/2211-5463.13173
- Dang, H.-S., Huang, Y.-F., Wang, C.-N., & Nguyen, T.-M.-T. (2016). An Application of the Short-Term Forecasting with Limited Data in the Healthcare Traveling Industry. Sustainability, 8(10), 1037. https://doi.org/10.3390/su8101037
- Dong, Z., & Sun, F. (2011). A novel DGM (1, 1) model for consumer price index forecasting. Proceedings of 2011 IEEE International Conference on Grey Systems and Intelligent Services, 303–307. https://doi.org/10.1109/gsis.2011.6044084
- Erdoğan, M. A. (2021). Türkiye'de şeftali fiyatlarının analizi ve fiyatların Box-Jenkins yöntemiyle tahmini [Bursa Uludağ University]. http://hdl.handle.net/11452/21704
- Es, H. A. (2020). Gri Tahmin Modelleri ile Toplam Enerji Talep Tahmini: Türkiye Örneği. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. https://doi.org/10.17714/gumusfenbil.676909
- Fan, G.-F., Wang, A., & Hong, W.-C. (2018). Combining Grey Model and Self-Adapting Intelligent Grey Model with Genetic Algorithm and Annual Share Changes in Natural Gas Demand Forecasting. Energies, 11(7), 1625. https://doi.org/10.3390/en11071625
- Ferbar Tratar, L. (2015). Forecasting method for noisy demand. International Journal of Production Economics, 161, 64–73. https://doi.org/10.1016/j.ijpe.2014.11.019
- Groebner, D. F., Shannon, P. W., & Fry, P. C. (2018). Business statistics: a decision-making approach (Tenth edition). Pearson.
- Gülerce, M., & Ünal, G. (2017). Forecasting of Oil and Agricultural Commodity Prices: VARMA Versus ARMA. Annals of Financial Economics, 12(3), 1750012. https://doi.org/10.1142/s2010495217500129
- Hanke, J., & Wichern, D. (2014). Business Forecasting. Pearson Education.
- Hasan, M. B., & Dhali, M. N. (2017). Determination of Optimal Smoothing Constants for Exponential Smoothing Method & Holt's Method. Dhaka University Journal of Science, 65(1), 55–59. https://doi.org/10.3329/dujs.v65i1.54509
- Hu, Y.-C., & Jiang, P. (2017). Forecasting energy demand using neural-network-based grey residual modification models. Journal of the Operational Research Society, 68(5), 556–565. https://doi.org/10.1057/s41274-016-0130-2
- Huang, K. Y., & Jane, C.-J. (2009). A hybrid model for stock market forecasting and portfolio selection based on ARX, grey system and RS theories. Expert Systems with Applications, 36(3), 5387–5392. https://doi.org/10.1016/j.eswa.2008.06.103
- Iqelan, B. M. (2017). Forecasts of female breast cancer referrals using grey prediction model GM(1,1). Applied Mathematical Sciences, 11, 2647–2662. https://doi.org/10.12988/ams.2017.79273
- Javed, S. A., Ikram, M., Tao, L., & Liu, S. (2020). Forecasting key indicators of China's inbound and outbound tourism: optimistic–pessimistic method. Grey Systems: Theory and Application, 11(2), 265–287. https://doi.org/10.1108/gs-12-2019-0064
- Jha, S. N., Jaiswal, P., Narsaiah, K., Kumar, R., Sharma, R., Gupta, M., Bhardwaj, R., & Singh, A. K. (2013). Authentication of Mango Varieties Using Near-Infrared Spectroscopy. Agricultural Research, 2(3), 229–235. https://doi.org/10.1007/s40003-013-0068-4
- Jia, W. (2024). Research on pricing and replenishment strategy of superstore goods based on linear regression and gray prediction models. Highlights in Business, Economics and Management, 24, 18–24. https://doi.org/10.54097/6eztb071
- Ju-Long, D. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288–294. https://doi.org/10.1016/s0167-6911(82)80025-x
- Kayacan, E., Ulutas, B., & Kaynak, O. (2010). Grey system theory-based models in time series prediction. Expert Systems with Applications, 37(2), 1784–1789. https://doi.org/10.1016/j.eswa.2009.07.064
- Khairina, D. M., Muaddam, A., Maharani, S., & Rahmania, H. (2019). Forecasting of Groundwater Tax Revenue Using Single Exponential Smoothing Method. E3s Web of Conferences, 125, 23006. https://doi.org/10.1051/e3sconf/201912523006
- Kling, J. L., & Bessler, D. A. (1985). A comparison of multivariate forecasting procedures for economic time series. International Journal of Forecasting, 1(1), 5–24. https://doi.org/10.1016/s0169-2070(85)80067-4
- Kohzadi, N., Boyd, M. S., Kermanshahi, B., & Kaastra, I. (1996). A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing, 10(2), 169–181. https://doi.org/10.1016/0925-2312(95)00020-8
- Kutlar, A. (1998). Introduction to Computer Applied Econometrics. Beta Press.
- Kuzu Yıldırım, S. (2021). Analysis of Mobile Banking Data with R (1st ed.). Dora Publishing.
- Küçükoflaz, M., Akçay, A., Çelik, E., & Sarıozkan, S. (2019). Türkiye'de kırmızı et ve süt fiyatlarının Box-Jenkins modeller ile geleceğe yönelik kestirimleri. Veteriner Hekimler Derneği Dergisi, 90(2), 122–131. https://doi.org/10.33188/vetheder.534469
- Li, B., Yang, W., & Li, X. (2018). Application of combined model with DGM(1,1) and linear regression in grain yield prediction. Grey Systems: Theory and Application, 8(1), 25–34. https://doi.org/10.1108/gs-07-2017-0020
- Li, J., Wang, Y., Li, J., & Jiang, R. (2023). Forecasting the Impact of the COVID-19 Outbreak on China's Cotton Exports by Modified Discrete Grey Model with Limited Data. AATCC Journal of Research, 247234442211479. https://doi.org/10.1177/24723444221147966
- Lin, Y., & Liu, S. A historical introduction to grey systems theory. 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04ch37583), 3, 2403–2408. https://doi.org/10.1109/icsmc.2004.1400689
- Liu, S., & Forrest, J. Y.-L. (2010). Grey Systems: Theory and Applications. Springer Verlag.
- Liu, S., & Yang, Y. (2017). Explanation of terms of grey forecasting models. Grey Systems: Theory and Application, 7(1), 123–128. https://doi.org/10.1108/gs-11-2016-0047
- Liu, Y., & Li, K. (2019). Research on House Price Forecast Based on Grey System GM (1, 1). 5th International Conference on Finance, Investment, And Law (ICFIL 2019), 200–206.
- Manalu, A., Roito, D., Rizkiadina, E., & Laia, Y. (2022). Analysis Forecasting Sales With Single Exponential Smoothing Method. Paradigma - Jurnal Komputer Dan Informatika, 24(2), 135–138. https://doi.org/10.31294/paradigma.v24i2.1255
- Manickam, A., Indrakala, S., & Kumar, P. (2023). A Novel Mathematical Study on the Predictions of Volatile Price of Gold Using Grey Models. Contemporary Mathematics, 270–285. https://doi.org/10.37256/cm.4220232389
- Norouzi, N., & Fani, M. (2020). Black gold falls, black plague arise - An Opec crude oil price forecast using a gray prediction model. Upstream Oil and Gas Technology, 5, 100015. https://doi.org/10.1016/j.upstre.2020.100015
- Oladipo, S., Sun, Y., & Adeleke, O. (2023). An Improved Particle Swarm Optimization and Adaptive Neuro-Fuzzy Inference System for Predicting the Energy Consumption of University Residence. International Transactions on Electrical Energy Systems, 2023, 1–16. https://doi.org/10.1155/2023/8508800
- Ostertagová, E. (2012). Modelling using Polynomial Regression. Procedia Engineering, 48, 500–506. https://doi.org/10.1016/j.proeng.2012.09.545
- P. Vatcheva, K., & Lee, M. (2016). Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. Epidemiology: Open Access, 6(2). https://doi.org/10.4172/2161-1165.1000227
- Petmezas, G., Cheimariotis, G.-A., Stefanopoulos, L., Rocha, B., Paiva, R. P., Katsaggelos, A. K., & Maglaveras, N. (2022). Automated Lung Sound Classification Using a Hybrid CNN-LSTM Network and Focal Loss Function. Sensors, 22(3), 1232. https://doi.org/10.3390/s22031232
- Ramadhan, A. S., Prabowo, A., Kankarofi, R. H., & Sulaiman, I. M. (2023). Forecasting Human Development Index With Double Exponential Smoothing Method And Acorrect Determination. International Journal of Business, Economics, And Social Development, 4(1), 25–31. https://doi.org/10.46336/ijbesd.v4i1.375
- Rathnayaka, R. K. T., & Seneviratna, D. (2019). Taylor series approximation and unbiased GM(1,1) based hybrid statistical approach for forecasting daily gold price demands. Grey Systems: Theory and Application, 9(1), 5–18. https://doi.org/10.1108/gs-08-2018-0032
- Shahwan, T., & Odening, M. (2017). Forecasting Agricultural Commodity Prices using Hybrid Neural Networks. In Computational Intelligence in Economics and Finance (pp. 63–74). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-72821-4\_3
- Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39–42. https://doi.org/10.12691/ajams-8-2-1
- Singh, P. K., Pandey, A. K., & Bose, S. C. (2022). A new grey system approach to forecast closing price of Bitcoin, Bionic, Cardano, Dogecoin, Ethereum, XRP Cryptocurrencies. Quality & Quantity, 57(3), 2429–2446. https://doi.org/10.1007/s11135-022-01463-0
- Soysal, M., & Ömürgönülşen, M. (2010). Türk turizm sektöründe talep tahmini üzerine bir uygulama. Anatolia: Turizm Araştırmaları Dergisi, 21(1), 128–136.
- Sukardi, S., Anisa, A. Y., & Herha, S. K. N. (2023). Application of the Single Exponential Smoothing Method For Flood Disaster Prediction. Journal of Computer Networks, Architecture and High Performance Computing, 5(2), 515–525. https://doi.org/10.47709/cnahpc.v5i2.2455
- Taylor, J. W. (2003). Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting, 19(4), 715–725. https://doi.org/10.1016/s0169-2070(03)00003-7
- Temuçin, T., & Temiz, İ. (2016). Türkiye Dış Ticaret İhracat Hacminin Projeksiyonu: Holt-Winters ve Box-Jenkins Modellerinin Kıyaslanması. Süleyman Demirel Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 21(3), 937–960.
- Tulkinov, S. (2023). Grey forecast of electricity production from coal and renewable sources in the USA, Japan and China. Grey Systems: Theory and Application, 13(3), 517–543. https://doi.org/10.1108/gs-10-2022-0107
- Wang, C.-N., & Le, A. P. (2019). Application of Multi-Criteria Decision-Making Model and GM (1,1) Theory for Evaluating Efficiency of FDI on Economic Growth: A Case Study in Developing Countries. Sustainability, 11(8), 2389. https://doi.org/10.3390/su11082389
- Weng, Y., Wang, X., Hua, J., Wang, H., Kang, M., & Wang, F.-Y. (2019). Forecasting Horticultural Products Price Using ARIMA Model and Neural Network Based on a Large-Scale Data Set Collected by Web Crawler. IEEE Transactions on Computational Social Systems, 6(3), 547–553. https://doi.org/10.1109/tcss.2019.2914499
- Wu, L., & Wang, Y. (2009). Modelling DGM(1,1) under the Criterion of the Minimization of Mean Absolute Percentage Error. 2009 Second International Symposium on Knowledge Acquisition and Modeling, 123–126. https://doi.org/10.1109/kam.2009.175
- Wu, W.-Z., Jiang, J., & Li, Q. (2019). A Novel Discrete Grey Model and Its Application. Mathematical Problems in Engineering, 2019(1). https://doi.org/10.1155/2019/9623878
- Xu, X., & Zhang, Y. (2021). Corn cash price forecasting with neural networks. Computers and Electronics in Agriculture, 184, 106120. https://doi.org/10.1016/j.compag.2021.106120
- Xu, Z., Lin, C., Zhuang, Z., & Wang, L. (2023). Research on Multistage Dynamic Trading Model Based on Gray Model and Auto-Regressive Integrated Moving Average Model. Discrete Dynamics in Nature and Society, 2023, 1–15. https://doi.org/10.1155/2023/1552074
- Yamak, R., & Erkan, E. (2021). Kripto Para Getirilerinde Haftanın Gün Etkisi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 25(3), 1356–1372. https://doi.org/10.53487/ataunisosbil.883979
- Yang, X., Zou, J., Kong, D., & Jiang, G. (2018). The analysis of GM (1, 1) grey model to predict the incidence trend of typhoid and paratyphoid fevers in Wuhan City, China. Medicine, 97(34), e11787. https://doi.org/10.1097/md.0000000000011787
- Yapar, G., Taylan Selamlar, H., Capar, S., & Yavuz, İ. (2019). ATA Method. Hacettepe Journal of Mathematics and Statistics, 48(6), 1838–1844. https://doi.org/10.15672/hujms.461032
- Yu, L. (2019). Adaptive Variable Weight Accumulation AVWA-DGM(1,1) Model Based on Particle Swarm Optimization. Journal of Advances in Mathematics and Computer Science, 1–17. https://doi.org/10.9734/jamcs/2019/v32i430150
- Yıldırım, B. F., & Kesintürk, T. (2015). Kredi Kartı Kullanım İstatistiklerinin Gri Tahmin ve Genetik Algoritma Tabanlı Gri Tahmin Metodu İle Tahmini: Karşılaştırmalı Analiz. Bankacılar, 26(94), 65–80.
- Yıldız, M., & Atış, E. (2019). Estimation of Turkey's organic fig export price using the ARMA method. Journal of Agricultural Economics, 25(2), 141–147.
- Zhang, D., & Luo, D. (2022). Evaluation of regional agricultural drought vulnerability based on unbiased generalized grey relational closeness degree. Grey Systems: Theory and Application, 12(4), 839–856. https://doi.org/10.1108/GS-12-2021-0187
- Zhao, Y., Xie, Q., & Zhang, Y. (2021). Assessment and Prediction for China's Regional Agricultural Sustainability. E3s Web of Conferences, 228, 2007. https://doi.org/10.1051/e3sconf/202122802007
- Zhou, W., & Ding, S. (2021). A novel discrete grey seasonal model and its applications. Communications in Nonlinear Science and Numerical Simulation, 93, 105493. https://doi.org/10.1016/j.cnsns.2020.105493
- Zong, J., & Zhu, Q. (2012). Price forecasting for agricultural products based on BP and RBF Neural Network. 2012 IEEE International Conference on Computer Science and Automation Engineering, 607–610. https://doi.org/10.1109/icsess.2012.6269540
- Zou, H., Xia, G., Yang, F., & Wang, H. (2007). An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting. Neurocomputing, 70(16–18), 2913–2923. https://doi.org/10.1016/j.neucom.2007.01.009
- Çuhadar, M. (2006). Turizm sektöründe talep tahmini için yapay sinir ağları kullanımı ve diğer yöntemlerle karşılaştırmalı analizi (Antalya ilinin dış turizm talebinde uygulama). Süleyman Demirel University.
- Ömürbek, V., Aksoy, E., & Akçakanat, Ö. (2018). Bankaların Grup Bazlı Karlılıklarının Gri Tahmin Yontemi Ile Deg\uerlendirilmesi. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 10(23), 75–89. https://doi.org/10.20875/makusobed.375038
- Özdemir, M., & Çılgın, C. (2022). Buğday Fiyatının Öngörümlenmesinde Makine Öğrenmesi ve Zaman Serisi Tahmin Modellerinin Performanslarının Karşılaştırılması. In M. Özcan (Ed.), 21. Yüzyılda İktisadı Anlamak : Güncel Ekonometrik Zaman Serileri Çalışmaları. Gazi Kitabevi.
- Özden, C. (2023). İstatistiksel ve Derin Öğrenme Yöntemlerini Kullanarak Tarımsal Girdi Fiyat Endeksi'nin Tahmin Edilmesi. Turkish Journal of Agriculture - Food Science and Technology, 11(9), 1751–1755. https://doi.org/10.24925/turjaf.v11i9.1751-1755.6359
- Özen, N. S., Saraç, S., & Koyuncu, M. (2021). COVID-19 Vakalarının Makine Öğrenmesi Algoritmaları ile Tahmini: Amerika Birleşik Devletleri Örneği. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.855113
- Şahin, E. E., & Bağcı, B. (2020). Kripto Para Fiyatlarının Tahmininde Gri Sistem Teorisi: Yöntemsel Karşılaştırma. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 20(1), 219–232. https://doi.org/10.18037/ausbd.700349
- Şahin, U. (2018). Forecasting of Turkey's electricity generation and consumption with grey prediction method. Mugla Journal of Science and Technology, 4(2), 205–209. https://doi.org/10.22531/muglajsci.450307
- Şahin, Y., & Aydemir, E. (2019). Akıllı Telefon Teknik Özellik Önem Derecelerinin AHP Ağırlıklı Gri İlişkisel Analizi Yöntemi İle Belirlenmesi. Eskişehir Osmangazi Üniversitesi İktisadi Ve İdari Bilimler Dergisi, 14(1), 225–238. https://doi.org/10.17153/oguiibf.486920
- Şahin, Y., & Kılınç, M. (2022). Analysis of Economic and Epidemic Performances of Countries During the Covid-19 Pandemic Period. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(2), 729–747. https://doi.org/10.29130/dubited.934715