Research Article
BibTex RIS Cite
Year 2021, , 247 - 258, 31.12.2021
https://doi.org/10.17093/alphanumeric.972138

Abstract

References

  • Aygören, H., Sarıtaş, H., Moralı, T. (2012). İMKB 100 Endeksinin Yapay Sinir Ağları ve Newton Nümerik Arama Modelleri ile Tahmini. Uluslararası Alanya İşletme Fakültesi Dergisi, 73-88.
  • Bayır, F. (2006). Yapay sinir ağları ve tahmin modellemesi üzerine bir uygulama. Yüksek Lisans Tezi, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü. İstanbul.
  • Dawson, C. W., Wilby, R. (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal. 43(1), 47-66.
  • Ergezer, H., Dikmen, M., Özdemir, E. (2003). Yapay sinir ağları ve tanıma sistemleri. PIVOLKA, 2(6), 14-17.
  • Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79, 2554-2558.
  • Hopfield, J. J. (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. 81, 3088-3092.
  • Khan, K., Sahai, A. (2012) A Comparison of BA, GA, PSO, BP and LM for Training Feed forward Neural Networks in e-Learning Context. I.J. Intelligent Systems and Applications, 7, 23-29.
  • Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986) Learning Internal Representation by Error Propagation. In: Rumelhart DE, McClelland JL and the PDP Research Group (eds) Parallel distributed processing, 1. MIT Press, Cambridge, Mass.
  • Saraçlı, S. (2011). Tip II Regresyon Tekniklerinin Monte-Carlo Simülasyonu ile Karşılaştırılması. e-Journal of New World Sciences Academy, 6(2), 26-35.
  • Suresh, S., Omkar, S. N., Mani, V. (2005) Parallel Implementation of Back-Propagation Algorithm in Networks of Workstations, IEEE Transactions on Parallel And Distributed Systems, 16(1), 24-34.
  • Uğur, A., Kınacı, A. C. (2006). Yapay Zeka Teknikleri ve Yapay Sinir Ağları Kullanılarak Web Sayfalarının Sınıflandırılması . "Türkiye'de İnternet" Konferans Bildirileri. Ankara: TOBB Ekonomi ve Teknoloji Üniversitesi. 345-349.
  • Saraçlı S. (2008). Comparison of Linear Regression Techniques in Measurement Error Models - Monte-Carlo Simulation Study -. Doctoral Dissertation, Eskişehir Osmangazi University, Department of Statistics.
  • Saylor, R.D., Edgerton, E.S. and Hartsell, B.E. (2006) Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation., Atmospheric Environment 40, 7546 -7556.
  • Isobe, T., Feigelson, E.D., Akritas, M.G. and Babu, G.J. (1990) Linear Regression in Astronomy I, the Astrophysical Journal, 364, 104-113.
  • Matlab User’s Guide, 2020, https://www.mathworks.com/help/deeplearning/ ref/logsig.html# :~:text=logsig%20is%20a%20transfer%20function,output%20from%20its%20net%20input.&text=and%20returns%20A%20%2C%20the%20S,A%20with%20respect%20to%20N%20. Date of Access: 28.10.2020.
  • Tunca, B. (2019) Artificial neural network approach on type II regression analysis. M.Sc. Thesis, Afyon Kocatepe University Institute of Science, Afyonkarahisar.

Artificial Neural Network approach on Type II Regression Analysis

Year 2021, , 247 - 258, 31.12.2021
https://doi.org/10.17093/alphanumeric.972138

Abstract

In this study, the Artificial Neural Network (ANN) approach was applied to the OLS-Bisector technique, which is one of the Type II Regression techniques, through this study. In order to measure the performance of this newly created ANN-Bisector technique, it was compared with the OLS-Bisector technique. First of all, literature information on ANN and OLS-Bisector Regression techniques is given, and the features of two techniques are mentioned. In line with this information, a comparison was made between OLS based bisector technique and ANN based bisector techniques. In order to compare these two techniques, they were modeled in different distributions and in different sample sizes. In order to compare the performances of these models, the "Mean Absolute Percent Error" (MAPE) criterion was used. As a result of the study, it was seen that the ANN based bisector technique gave better results with lower error than the OLS based bisector technique. With this study, it is foreseen that it will represent an example for researchers who want to work in these fields in the future.

References

  • Aygören, H., Sarıtaş, H., Moralı, T. (2012). İMKB 100 Endeksinin Yapay Sinir Ağları ve Newton Nümerik Arama Modelleri ile Tahmini. Uluslararası Alanya İşletme Fakültesi Dergisi, 73-88.
  • Bayır, F. (2006). Yapay sinir ağları ve tahmin modellemesi üzerine bir uygulama. Yüksek Lisans Tezi, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü. İstanbul.
  • Dawson, C. W., Wilby, R. (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal. 43(1), 47-66.
  • Ergezer, H., Dikmen, M., Özdemir, E. (2003). Yapay sinir ağları ve tanıma sistemleri. PIVOLKA, 2(6), 14-17.
  • Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79, 2554-2558.
  • Hopfield, J. J. (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. 81, 3088-3092.
  • Khan, K., Sahai, A. (2012) A Comparison of BA, GA, PSO, BP and LM for Training Feed forward Neural Networks in e-Learning Context. I.J. Intelligent Systems and Applications, 7, 23-29.
  • Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986) Learning Internal Representation by Error Propagation. In: Rumelhart DE, McClelland JL and the PDP Research Group (eds) Parallel distributed processing, 1. MIT Press, Cambridge, Mass.
  • Saraçlı, S. (2011). Tip II Regresyon Tekniklerinin Monte-Carlo Simülasyonu ile Karşılaştırılması. e-Journal of New World Sciences Academy, 6(2), 26-35.
  • Suresh, S., Omkar, S. N., Mani, V. (2005) Parallel Implementation of Back-Propagation Algorithm in Networks of Workstations, IEEE Transactions on Parallel And Distributed Systems, 16(1), 24-34.
  • Uğur, A., Kınacı, A. C. (2006). Yapay Zeka Teknikleri ve Yapay Sinir Ağları Kullanılarak Web Sayfalarının Sınıflandırılması . "Türkiye'de İnternet" Konferans Bildirileri. Ankara: TOBB Ekonomi ve Teknoloji Üniversitesi. 345-349.
  • Saraçlı S. (2008). Comparison of Linear Regression Techniques in Measurement Error Models - Monte-Carlo Simulation Study -. Doctoral Dissertation, Eskişehir Osmangazi University, Department of Statistics.
  • Saylor, R.D., Edgerton, E.S. and Hartsell, B.E. (2006) Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation., Atmospheric Environment 40, 7546 -7556.
  • Isobe, T., Feigelson, E.D., Akritas, M.G. and Babu, G.J. (1990) Linear Regression in Astronomy I, the Astrophysical Journal, 364, 104-113.
  • Matlab User’s Guide, 2020, https://www.mathworks.com/help/deeplearning/ ref/logsig.html# :~:text=logsig%20is%20a%20transfer%20function,output%20from%20its%20net%20input.&text=and%20returns%20A%20%2C%20the%20S,A%20with%20respect%20to%20N%20. Date of Access: 28.10.2020.
  • Tunca, B. (2019) Artificial neural network approach on type II regression analysis. M.Sc. Thesis, Afyon Kocatepe University Institute of Science, Afyonkarahisar.
There are 16 citations in total.

Details

Primary Language English
Subjects Industrial Engineering
Journal Section Articles
Authors

Berkalp Tunca 0000-0002-6501-9963

Sinan Saraçlı 0000-0003-4662-8031

Publication Date December 31, 2021
Submission Date July 15, 2021
Published in Issue Year 2021

Cite

APA Tunca, B., & Saraçlı, S. (2021). Artificial Neural Network approach on Type II Regression Analysis. Alphanumeric Journal, 9(2), 247-258. https://doi.org/10.17093/alphanumeric.972138

Alphanumeric Journal is hosted on DergiPark, a web based online submission and peer review system powered by TUBİTAK ULAKBIM.

Alphanumeric Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License