Research Article
BibTex RIS Cite
Year 2024, Volume: 12 Issue: 2, 75 - 106, 31.12.2024

Abstract

References

  • Bizzego, A., Gabrieli, G., Bornstein, M. H., Deater-Deckard, K., Lansford, J. E., Bradley, R. H., Costa, M., & Esposito, G. (2021). Predictors of Contemporary under-5 Child Mortality in Low- and Middle-Income Countries: A Machine Learning Approach. International Journal of Environmental Research and Public Health, 18(3), 1315. https://doi.org/10.3390/ijerph18031315
  • Cheng, X., Yang, Y., Schwebel, D. C., Liu, Z., Li, L., Cheng, P., Ning, P., & Hu, G. (2020). Population ageing and mortality during 1990–2017: A global decomposition analysis. PLOS Medicine, 17(6), e1003138. https://doi.org/10.1371/journal.pmed.1003138
  • Geograp.IN. (2024, March). Color the map. Matika.in z. s. https://www.geograf.in/en/map-color.php
  • Hayran, O., & Ozbek, H. (2017). Sag\ul ık bilimlerinde aras\ct ırma ve istatistik yontemler ((SPSS uygulama ornekleri ile genis\cletilmis ̧2. baskı).). Iṡtanbul.
  • Hedegaard, H. (2021). Suicide Mortality in the United States, 19992019. https://doi.org/10.15620/cdc:101761
  • Kayode, G. A., Grobbee, D. E., Amoakoh-Coleman, M., Ansah, E., Uthman, O. A., & Klipstein-Grobusch, K. (2017). Variation in neonatal mortality and its relation to country characteristics in sub-Saharan Africa: an ecological study. BMJ Global Health, 2(4), e209. https://doi.org/10.1136/bmjgh-2016-000209
  • Kelley, E., & Hurst, J. (2006). https://doi.org/10.1787/440134737301
  • Knoema. (2024, March). World Development Indicators. Knoema. https://public.knoema.com/lftihvf/world-development-indicators-wdi
  • Liang, C. Y., Kornas, K., Bornbaum, C., Shuldiner, J., De Prophetis, E., Buajitti, E., Pach, B., & Rosella, L. C. (2023). Mortality-based indicators for~measuring health system performance and~population health in high-income countries: a systematic review. IJQHC Communications, 3(2). https://doi.org/10.1093/ijcoms/lyad010 Mohbey, K. K., & Bakariya, B. (2022). An Introduction to Python Programming. BPB Publications.
  • Odong, T. L., Heerwaarden, J. van, Hintum, T. J. L. van, Eeuwijk, F. A. van, & Jansen, J. (2013). Improving Hierarchical Clustering of Genotypic Data via Principal Component Analysis. Crop Science, 53(4), 1546–1554. https:// doi.org/10.2135/cropsci2012.04.0215
  • Pajankar, A., & Joshi, A. (2022). Handson Machine Learning with Python: Implement Neural Network Solutions with Scikitlearn and PyTorch. Apress. https://doi.org/10.1007/978-1-4842-7921-2
  • Ramasubramanian, K., & Singh, A. (2019). Machine Learning Using R: With Time Series and IndustryBased Use Cases in R. Apress. https://doi.org/10.1007/978-1-4842-4215-5
  • Ros, F., & Riad, R. (2024). Feature and Dimensionality Reduction for Clustering with Deep Learning. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48743-9
  • Sanguansat, P. (2012). Principal Component Analysis  Multidisciplinary Applications. InTech. https://doi.org/10.5772/2694
  • Sartorius, B. K., & Sartorius, K. (2014). Global infant mortality trends and attributable determinants – an ecological study using data from 192 countries for the period 1990–2011. Population Health Metrics, 12(1). https:// doi.org/10.1186/s12963-014-0029-6
  • UNICEF. (2023). Levels and Trends in Child Mortality (Issue Report2023).
  • Vasques, X. (2024). Machine Learning Theory and Applications: Handson Use Cases with Python on Classical and Quantum Machines. Wiley. https://doi.org/10.1002/9781394220649
  • Victora, C. G., Barros, A. J. D., Blumenberg, C., Costa, J. C., Vidaletti, L. P., Wehrmeister, F. C., Masquelier, B., Hug, L., & You, D. (2020). Association between ethnicity and under-5 mortality: analysis of data from demographic surveys from 36 low-income and middle-income countries. The Lancet Global Health, 8(3), e352–e361. https://doi.org/10.1016/s2214-109x(20)30025-5
  • Ward, Z. J., Atun, R., King, G., Sequeira Dmello, B., & Goldie, S. J. (2023). Simulation-based estimates and projections of global, regional and country-level maternal mortality by cause, 1990–2050. Nature Medicine, 29(5), 1253–1261. https://doi.org/10.1038/s41591-023-02310-x
  • WHO. (2024, August). Cancer. World Health Organization. https://www.who.int/health-topics/cancer/#tab=tab\_1
  • World Bank. (2024, March). The World Development Indicators. The World Bank. https://datatopics.worldbank.org/world-development-indicators/

Analysis of Mortality-Based Global Health Metrics: A Principle Component Analysis (PCA) – K-Means Approach to Country-Level Data

Year 2024, Volume: 12 Issue: 2, 75 - 106, 31.12.2024

Abstract

In this study, principal component analysis and the k-means algorithm were employed for the analysis of Mortality-Based Global Health Metrics. The aim of this study is to create homogeneous clusters of countries in terms of Mortality-Based Global Health Metrics, to identify similar countries within clusters using within-cluster exploratory data analysis methods, and to investigate the common characteristics of these countries. At the country level, a dataset comprising 34 indicators was compiled. However, due to the curse of dimensionality inherent in machine learning, the dataset was reduced to 6 principal components through principal component analysis (PCA). Countries were then clustered into 6 groups using the K-means clustering analysis method. The elbow method and silhouette method were utilized for optimal cluster selection. The cluster information resulting from dimensionality reduction analysis and clustering analysis can serve as a valuable input for policymakers in healthcare, particularly regarding cluster centroids and the countries constituting each cluster. Healthcare policymakers for each country can develop much more rational policies in their decision-making processes by evaluating their own countries, other countries within the same cluster, the characteristic features of their own clusters, and the distances to successful cluster centroids. This enables better examination of positive and negative indicators in country comparisons.

References

  • Bizzego, A., Gabrieli, G., Bornstein, M. H., Deater-Deckard, K., Lansford, J. E., Bradley, R. H., Costa, M., & Esposito, G. (2021). Predictors of Contemporary under-5 Child Mortality in Low- and Middle-Income Countries: A Machine Learning Approach. International Journal of Environmental Research and Public Health, 18(3), 1315. https://doi.org/10.3390/ijerph18031315
  • Cheng, X., Yang, Y., Schwebel, D. C., Liu, Z., Li, L., Cheng, P., Ning, P., & Hu, G. (2020). Population ageing and mortality during 1990–2017: A global decomposition analysis. PLOS Medicine, 17(6), e1003138. https://doi.org/10.1371/journal.pmed.1003138
  • Geograp.IN. (2024, March). Color the map. Matika.in z. s. https://www.geograf.in/en/map-color.php
  • Hayran, O., & Ozbek, H. (2017). Sag\ul ık bilimlerinde aras\ct ırma ve istatistik yontemler ((SPSS uygulama ornekleri ile genis\cletilmis ̧2. baskı).). Iṡtanbul.
  • Hedegaard, H. (2021). Suicide Mortality in the United States, 19992019. https://doi.org/10.15620/cdc:101761
  • Kayode, G. A., Grobbee, D. E., Amoakoh-Coleman, M., Ansah, E., Uthman, O. A., & Klipstein-Grobusch, K. (2017). Variation in neonatal mortality and its relation to country characteristics in sub-Saharan Africa: an ecological study. BMJ Global Health, 2(4), e209. https://doi.org/10.1136/bmjgh-2016-000209
  • Kelley, E., & Hurst, J. (2006). https://doi.org/10.1787/440134737301
  • Knoema. (2024, March). World Development Indicators. Knoema. https://public.knoema.com/lftihvf/world-development-indicators-wdi
  • Liang, C. Y., Kornas, K., Bornbaum, C., Shuldiner, J., De Prophetis, E., Buajitti, E., Pach, B., & Rosella, L. C. (2023). Mortality-based indicators for~measuring health system performance and~population health in high-income countries: a systematic review. IJQHC Communications, 3(2). https://doi.org/10.1093/ijcoms/lyad010 Mohbey, K. K., & Bakariya, B. (2022). An Introduction to Python Programming. BPB Publications.
  • Odong, T. L., Heerwaarden, J. van, Hintum, T. J. L. van, Eeuwijk, F. A. van, & Jansen, J. (2013). Improving Hierarchical Clustering of Genotypic Data via Principal Component Analysis. Crop Science, 53(4), 1546–1554. https:// doi.org/10.2135/cropsci2012.04.0215
  • Pajankar, A., & Joshi, A. (2022). Handson Machine Learning with Python: Implement Neural Network Solutions with Scikitlearn and PyTorch. Apress. https://doi.org/10.1007/978-1-4842-7921-2
  • Ramasubramanian, K., & Singh, A. (2019). Machine Learning Using R: With Time Series and IndustryBased Use Cases in R. Apress. https://doi.org/10.1007/978-1-4842-4215-5
  • Ros, F., & Riad, R. (2024). Feature and Dimensionality Reduction for Clustering with Deep Learning. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48743-9
  • Sanguansat, P. (2012). Principal Component Analysis  Multidisciplinary Applications. InTech. https://doi.org/10.5772/2694
  • Sartorius, B. K., & Sartorius, K. (2014). Global infant mortality trends and attributable determinants – an ecological study using data from 192 countries for the period 1990–2011. Population Health Metrics, 12(1). https:// doi.org/10.1186/s12963-014-0029-6
  • UNICEF. (2023). Levels and Trends in Child Mortality (Issue Report2023).
  • Vasques, X. (2024). Machine Learning Theory and Applications: Handson Use Cases with Python on Classical and Quantum Machines. Wiley. https://doi.org/10.1002/9781394220649
  • Victora, C. G., Barros, A. J. D., Blumenberg, C., Costa, J. C., Vidaletti, L. P., Wehrmeister, F. C., Masquelier, B., Hug, L., & You, D. (2020). Association between ethnicity and under-5 mortality: analysis of data from demographic surveys from 36 low-income and middle-income countries. The Lancet Global Health, 8(3), e352–e361. https://doi.org/10.1016/s2214-109x(20)30025-5
  • Ward, Z. J., Atun, R., King, G., Sequeira Dmello, B., & Goldie, S. J. (2023). Simulation-based estimates and projections of global, regional and country-level maternal mortality by cause, 1990–2050. Nature Medicine, 29(5), 1253–1261. https://doi.org/10.1038/s41591-023-02310-x
  • WHO. (2024, August). Cancer. World Health Organization. https://www.who.int/health-topics/cancer/#tab=tab\_1
  • World Bank. (2024, March). The World Development Indicators. The World Bank. https://datatopics.worldbank.org/world-development-indicators/
There are 21 citations in total.

Details

Primary Language English
Subjects Operations Research
Journal Section Articles
Authors

Güler Önder 0000-0002-0879-9545

Yeter Uslu 0000-0002-8529-6466

Ümran Tüzün 0009-0007-8741-727X

Emrah Önder 0000-0002-0554-1290

Publication Date December 31, 2024
Submission Date September 11, 2024
Acceptance Date October 6, 2024
Published in Issue Year 2024 Volume: 12 Issue: 2

Cite

APA Önder, G., Uslu, Y., Tüzün, Ü., Önder, E. (2024). Analysis of Mortality-Based Global Health Metrics: A Principle Component Analysis (PCA) – K-Means Approach to Country-Level Data. Alphanumeric Journal, 12(2), 75-106. https://doi.org/10.17093/alphanumeric.1548227

Alphanumeric Journal is hosted on DergiPark, a web based online submission and peer review system powered by TUBİTAK ULAKBIM.

Alphanumeric Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License