Research Article
BibTex RIS Cite

Invariant Submanifolds of a Lorentzian β-Kenmotsu Manifold

Year 2025, Volume: 6 Issue: 1, 47 - 56, 30.06.2025
https://doi.org/10.54559/amesia.1730026

Abstract

In this paper we have investigated invariant submanifolds of Lorentzian β-Kenmotsu manifolds and obtained the necessary and sufficient conditions for total geodesic submanifolds of Lorentzian β-Kenmotsu manifolds. We have considered pseudoparallel, 2-pseudoparallel, Ricci generalized pseudoparallel, Ricci generalized 2-pseudoparallel submanifolds of these manifolds one by one and studied the geometry of Lorentzian β-Kenmotsu manifolds. Moreover, we have investigated the behavior of Lorentzian β-Kenmotsu manifolds ubder special curvature conditions written with respect to concircular and projective eigenvector tensors, and determined important properties of these manifolds.

References

  • S. K. Hui, V. N. Mishra, T. Pal, Vandana, Some classes of invariant submanifolds of (LCS)_n-manifolds, Italian Journal of Pure and Applied Mathematics 39 (2018) 359–372.
  • V. Venkatesha, S. Basavarajappa, Invariant submanifolds of LP-Sasakian manifolds, Khayyam Journal of Mathematics 6 (1) (2020) 16–26.
  • S. Sular, C. Özgür, C. Murathan, Pseudoparallel anti-invariant submanifolds of Kenmotsu manifolds, Hacettepe Journal of Mathematics and Statistics 39 (4) (2010) 535–543.
  • B. C. Montano, L. D. Terlizzi, M. M. Tripathi, Invariant submanifolds of contact (k,μ)-manifolds, Glasgow Mathematical Journal 50 (2008) 499–507.
  • P. Uygun, S. Dirik, M. Atceken, T. Mert, Some characterizations invariant submanifolds of A (k,μ)-para contact space, Journal of Engineering Research and Applied Science 11 (1) (2022) 1967–1972.
  • M. Atçeken, T. Mert, Characterizations for totally geodesic submanifolds of a K-paracontact manifold, AIMS Mathematics 6 (7) (2021) 7320–7332.
  • M. Atçeken, Some results on invarinat submanifolds of Lorentzian para-Kenmotsu manifolds, Korean Journal of Mathematics 30 (1) (2022) 175–185.
  • M. Atçeken, Ü. Yıldırım, S. Dirik, Semiparallel submanifolds of a normal paracontact metric manifolds, Hacettepe Journal of Mathematics and Statistics 48 (2) (2019) 501–509.
  • S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Mathematical Journal 90 (1985) 173–187.
  • S. K. Hui, P. Mandal, Pseudo parallel contactc CR-submanifolds of Kenmotsu manifolds, Indian Journal of Mathematics 59 (3) (2017) 385–402.
  • S. K. Hui, S. Kishor, J. Roy, Chaki-pseudo parallel invariant submanifold on Sasakian manifolds with respect to certain connections, Ganita 68 (2) (2018) 19–29.
  • D. G. Prakasha, C. S. Bagewadi, N. S. Basavarajappa, On pseudosymmetric Lorentzian α-Sasakian manifolds, International Journal of Pure and Applied Mathematics 48 (2008) 57–65.
  • C. S. Bagewadi, E. G. Kumar, Notes on trans-Sasakian manifolds, Tensor New Series 65 (1) (2004) 80–88.
  • K. Yano, S. Sawaki, Riemannian manifold admitting a conformal transformation group, Journal of Differential Geometry 2 (1968) 161–184.

Year 2025, Volume: 6 Issue: 1, 47 - 56, 30.06.2025
https://doi.org/10.54559/amesia.1730026

Abstract

References

  • S. K. Hui, V. N. Mishra, T. Pal, Vandana, Some classes of invariant submanifolds of (LCS)_n-manifolds, Italian Journal of Pure and Applied Mathematics 39 (2018) 359–372.
  • V. Venkatesha, S. Basavarajappa, Invariant submanifolds of LP-Sasakian manifolds, Khayyam Journal of Mathematics 6 (1) (2020) 16–26.
  • S. Sular, C. Özgür, C. Murathan, Pseudoparallel anti-invariant submanifolds of Kenmotsu manifolds, Hacettepe Journal of Mathematics and Statistics 39 (4) (2010) 535–543.
  • B. C. Montano, L. D. Terlizzi, M. M. Tripathi, Invariant submanifolds of contact (k,μ)-manifolds, Glasgow Mathematical Journal 50 (2008) 499–507.
  • P. Uygun, S. Dirik, M. Atceken, T. Mert, Some characterizations invariant submanifolds of A (k,μ)-para contact space, Journal of Engineering Research and Applied Science 11 (1) (2022) 1967–1972.
  • M. Atçeken, T. Mert, Characterizations for totally geodesic submanifolds of a K-paracontact manifold, AIMS Mathematics 6 (7) (2021) 7320–7332.
  • M. Atçeken, Some results on invarinat submanifolds of Lorentzian para-Kenmotsu manifolds, Korean Journal of Mathematics 30 (1) (2022) 175–185.
  • M. Atçeken, Ü. Yıldırım, S. Dirik, Semiparallel submanifolds of a normal paracontact metric manifolds, Hacettepe Journal of Mathematics and Statistics 48 (2) (2019) 501–509.
  • S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Mathematical Journal 90 (1985) 173–187.
  • S. K. Hui, P. Mandal, Pseudo parallel contactc CR-submanifolds of Kenmotsu manifolds, Indian Journal of Mathematics 59 (3) (2017) 385–402.
  • S. K. Hui, S. Kishor, J. Roy, Chaki-pseudo parallel invariant submanifold on Sasakian manifolds with respect to certain connections, Ganita 68 (2) (2018) 19–29.
  • D. G. Prakasha, C. S. Bagewadi, N. S. Basavarajappa, On pseudosymmetric Lorentzian α-Sasakian manifolds, International Journal of Pure and Applied Mathematics 48 (2008) 57–65.
  • C. S. Bagewadi, E. G. Kumar, Notes on trans-Sasakian manifolds, Tensor New Series 65 (1) (2004) 80–88.
  • K. Yano, S. Sawaki, Riemannian manifold admitting a conformal transformation group, Journal of Differential Geometry 2 (1968) 161–184.
There are 14 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Tuğba Mert

Mehmet Atçeken

Early Pub Date June 29, 2025
Publication Date June 30, 2025
Submission Date May 14, 2025
Acceptance Date June 20, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Mert, T., & Atçeken, M. (2025). Invariant Submanifolds of a Lorentzian β-Kenmotsu Manifold. Amesia, 6(1), 47-56. https://doi.org/10.54559/amesia.1730026
AMA Mert T, Atçeken M. Invariant Submanifolds of a Lorentzian β-Kenmotsu Manifold. Amesia. June 2025;6(1):47-56. doi:10.54559/amesia.1730026
Chicago Mert, Tuğba, and Mehmet Atçeken. “Invariant Submanifolds of a Lorentzian β-Kenmotsu Manifold”. Amesia 6, no. 1 (June 2025): 47-56. https://doi.org/10.54559/amesia.1730026.
EndNote Mert T, Atçeken M (June 1, 2025) Invariant Submanifolds of a Lorentzian β-Kenmotsu Manifold. Amesia 6 1 47–56.
IEEE T. Mert and M. Atçeken, “Invariant Submanifolds of a Lorentzian β-Kenmotsu Manifold”, Amesia, vol. 6, no. 1, pp. 47–56, 2025, doi: 10.54559/amesia.1730026.
ISNAD Mert, Tuğba - Atçeken, Mehmet. “Invariant Submanifolds of a Lorentzian β-Kenmotsu Manifold”. Amesia 6/1 (June2025), 47-56. https://doi.org/10.54559/amesia.1730026.
JAMA Mert T, Atçeken M. Invariant Submanifolds of a Lorentzian β-Kenmotsu Manifold. Amesia. 2025;6:47–56.
MLA Mert, Tuğba and Mehmet Atçeken. “Invariant Submanifolds of a Lorentzian β-Kenmotsu Manifold”. Amesia, vol. 6, no. 1, 2025, pp. 47-56, doi:10.54559/amesia.1730026.
Vancouver Mert T, Atçeken M. Invariant Submanifolds of a Lorentzian β-Kenmotsu Manifold. Amesia. 2025;6(1):47-56.


EBSCO  34303                                              

DOAJ 34302 34302

Scilit 34305  

SOBIAD 34304