Research Article
BibTex RIS Cite

Türk Kadınlarında Meme Kanseri Risk Değerlendirmesi için Gail, NSABP ve NCI Risk Analiz Modellerinin Duyarlılıkları

Year 2018, Volume: 18 Issue: 1, 31 - 39, 30.03.2018
https://doi.org/10.17098/amj.408963

Abstract

Giriş: Kadınlarda en
sık görülen kanser olan meme kanserine karşı en iyi koruma erken tanıdır. Meme
kanseri gelişimi için yüksek riskli bireyleri tanımlamak için en sık kullanılan
risk değerlendirme yöntemleri Gail ve modifikasyonları olan National Surgical
Adjuvant Breast and Bowel Project (NSABP) ve National Cancer Institute NCI
modelleridir. Araştırmamızda bu modellerin duyarlılıklarını değerlendirmeyi
amaçladık.
Materyal ve Metot: Ankara Numune
Eğitim ve Araştırma Hastanesi ve Ankara Üniversitesi Tıp Fakültesi’nde, Nisan
1998 ile Aralık 2014 tarihleri arasında, meme kanseri tanısı almış 1333 hastayı
retrospektif olarak değerlendirdik.



Bulgular: Gail modeli hastaların %32,52’ sini yüksek riskli olarak tanımladı.
NSABP %15,48 ve NCI modeli %19,39 hastayı yüksek riskli olarak tanımladı.



Sonuç: Üç modelin
duyarlılığını karşılaştırdığımızda Gail modeli en duyarlısıdır; fakat zaten
meme kanseri gelişmiş olan hastaların sadece %32,52’ sini yüksek riskli olarak
tanımlayabilmiştir. Sonuçlar arasında korelasyon vardı; ama anlamlı derecede
farklı idi. Biz, bu üç modelin, düşük duyarlılık ve zayıf uyuşmalarına bağlı
olarak, Türk kadınlarına uygun olmadığına karar verdik. Türk kadınları için,
farklı parametreler eklenerek yeni bir risk değerlendirme modeli geliştirilmesine
ihtiyaç vardır.

References

  • 1. Donegan WL. Introduction to history of breast cancer. In: Donegan WL, Spratt JS editors. Cancer of the breast. 7th ed. Philadelphia, PA, USA: Saunders; 1995:1-5.
  • 2. Iglehart JD. The breast. In: Sabiston DC editors. Textbook of Surgery. 14th ed. Philadelphia, PA, USA: Saunders; 1995:510-50.
  • 3. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. Ca Cancer J Clin 2011;61:69-90.
  • 4. Siegel R, Ma J, Zou Z, Jemal A. Cancer Statistics 2014. Ca Cancer J Clin 2014;64:9–29.
  • 5. Ozmen V. Breast cancer in the world and Turkey. J Breast Health 2008;4:2-5.
  • 6. Kose MR, Bora Başara B, Güler C, Yentür GK. T.C. Sağlık Bakanlığı. Sağlık İstatistikleri Yıllığı 2013. Ankara: Sentez Matbaacılık ve Yayıncılık; 2014.
  • 7. Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, Mulvihill JJ. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 1989;81:1879-86.
  • 8. Matsuno RK, Costantino JP, Ziegler RG, Anderson GL, Li H, Pee D, Gail MH. Projecting individualized absolute invasive breast cancer risk in Asian and Pacific Islander American women. J Natl Cancer Inst 2011;103:951–61.
  • 9. Nadeem R, Abu-Rustum MD, Herbolsheimer DO. Breast Cancer Risk Assessment in Indigent Women at a Public Hospital. Gynecologic Oncology 2001;81:287-90.
  • 10. Euhus DM, Leitch AM, Huth JF, Peters GN. Limitations of the Gail model in the specialized breast cancer risk assessment clinic. Breast J 2002;8:23-7.
  • 11. McTiernan A, Kuniyuki A, Yasui Y, Bowen D, Burke W, Culver JB, Anderson R, Durfy S. Comparisons of two breast cancer risk estimates in women with a family history of breast cancer. Cancer Epidemiol Biomarkers Prev 2001;10:333-8.
  • 12. MacKarem G, Roche CA, Hughes KS. The effectiveness of the Gail model in estimating risk for development of breast cancer in women under 40 years of age. Breast J 2001;7:34-9.
  • 13. Detailed Breast Cancer Risk Calculator. http://www.halls.md/breast/risk.htm (Date of access: 22th November 2017).
  • 14. National Cancer Institute. http://www.cancer.gov/bcrisktool (Date of access: 22th November 2017).
  • 15. Kaur JS, Roubidoux MA, Sloan J, Novotny P. Can the Gail Model be useful in American Indian and Alaska Native populations? Cancer 2004;1:5.
  • 16. Costantino JP, Gail MH, Pee D, Anderson S, Redmond CK, Benichou J, Wieand HS. Validation studies for models projecting the risk of invasive and total breast cancer incidence. J Natl Cancer Inst 1999;91:1541-8.
  • 17. Pastor Climente IP, Morales Suárez-Varela MM, Llopis González A, Magraner Gil JF. Application of the Gail method of calculating risk in the population of Valencia. Clin Transl Oncol 2005;7:336-43.
  • 18. Adams-Campbell LL, Makambi KH, Palmer JR, Rosenberg L. Diagnostic accuracy of the Gail model in the Black Women's Health Study. Breast J 2007;13:332-6.
  • 19. Erbil N, Dundar N, Inan C, Bolukbas N. Breast cancer risk assessment using the Gail model: a Turkish study. Asian Pacific journal of cancer prevention: APJCP 2015;16:303-6.
  • 20. Kartal M, Ozcakar N, Hatipoglu S, Tan MN, Guldal AD. Breast cancer risk perceptions of Turkish women attending primary care: a cross-sectional study. BMC women's health 2014;14:152.
  • 21. Ulusoy C, Kepenekci I, Kose K, Aydıntug S, Cam R. Applicability of the Gail model for breast cancer risk assessment in Turkish female population and evaluation of breastfeeding as a risk factor. Breast cancer research and treatment 2010;120:419-24.
  • 22. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159–74.

Sensitivities of the Gail, NSABP and NCI Risk Analysis Models for Turkish Women for Breast Cancer Risk Assessment

Year 2018, Volume: 18 Issue: 1, 31 - 39, 30.03.2018
https://doi.org/10.17098/amj.408963

Abstract

Objectives: The best protection against breast cancer, the most
common cancer in women, is early detection. The most commonly used risk assessment
tools, identifying women at high risk of developing breast cancer, are the Gail
model and its modifications, National Surgical Adjuvant Breast and Bowel
Project (NSABP) and National Cancer Institute (NCI) models. We aimed to
evaluate the sensitivities of these models. 
Materials and Methods: We
retrospectively evaluated 1333 patients who had been diagnosed with breast
cancer at Ankara Numune Education and Research Hospital and Ankara University
Medical Faculty between April 1998 and December 2014.
Results: The Gail model identified
32.52% of the patients as being at high risk. The model NSABP identified 15.48%
as being at high risk and the NCI identified 19.39 %. 
Conclusion: Comparison of the
sensitivity of three models revealed Gail model as the most sensitive one, but
it only identified 32.52 % of the patients who developed breast cancer as being
at high risk. There was a correlation between the results, but results were
significantly different. We conclude that these three models are not applicable
to Turkish women due to their low sensitivity and poor concordance. There is a
need to develop a new risk assessment model with the addition of different
parameters for Turkish women.

References

  • 1. Donegan WL. Introduction to history of breast cancer. In: Donegan WL, Spratt JS editors. Cancer of the breast. 7th ed. Philadelphia, PA, USA: Saunders; 1995:1-5.
  • 2. Iglehart JD. The breast. In: Sabiston DC editors. Textbook of Surgery. 14th ed. Philadelphia, PA, USA: Saunders; 1995:510-50.
  • 3. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. Ca Cancer J Clin 2011;61:69-90.
  • 4. Siegel R, Ma J, Zou Z, Jemal A. Cancer Statistics 2014. Ca Cancer J Clin 2014;64:9–29.
  • 5. Ozmen V. Breast cancer in the world and Turkey. J Breast Health 2008;4:2-5.
  • 6. Kose MR, Bora Başara B, Güler C, Yentür GK. T.C. Sağlık Bakanlığı. Sağlık İstatistikleri Yıllığı 2013. Ankara: Sentez Matbaacılık ve Yayıncılık; 2014.
  • 7. Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, Mulvihill JJ. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 1989;81:1879-86.
  • 8. Matsuno RK, Costantino JP, Ziegler RG, Anderson GL, Li H, Pee D, Gail MH. Projecting individualized absolute invasive breast cancer risk in Asian and Pacific Islander American women. J Natl Cancer Inst 2011;103:951–61.
  • 9. Nadeem R, Abu-Rustum MD, Herbolsheimer DO. Breast Cancer Risk Assessment in Indigent Women at a Public Hospital. Gynecologic Oncology 2001;81:287-90.
  • 10. Euhus DM, Leitch AM, Huth JF, Peters GN. Limitations of the Gail model in the specialized breast cancer risk assessment clinic. Breast J 2002;8:23-7.
  • 11. McTiernan A, Kuniyuki A, Yasui Y, Bowen D, Burke W, Culver JB, Anderson R, Durfy S. Comparisons of two breast cancer risk estimates in women with a family history of breast cancer. Cancer Epidemiol Biomarkers Prev 2001;10:333-8.
  • 12. MacKarem G, Roche CA, Hughes KS. The effectiveness of the Gail model in estimating risk for development of breast cancer in women under 40 years of age. Breast J 2001;7:34-9.
  • 13. Detailed Breast Cancer Risk Calculator. http://www.halls.md/breast/risk.htm (Date of access: 22th November 2017).
  • 14. National Cancer Institute. http://www.cancer.gov/bcrisktool (Date of access: 22th November 2017).
  • 15. Kaur JS, Roubidoux MA, Sloan J, Novotny P. Can the Gail Model be useful in American Indian and Alaska Native populations? Cancer 2004;1:5.
  • 16. Costantino JP, Gail MH, Pee D, Anderson S, Redmond CK, Benichou J, Wieand HS. Validation studies for models projecting the risk of invasive and total breast cancer incidence. J Natl Cancer Inst 1999;91:1541-8.
  • 17. Pastor Climente IP, Morales Suárez-Varela MM, Llopis González A, Magraner Gil JF. Application of the Gail method of calculating risk in the population of Valencia. Clin Transl Oncol 2005;7:336-43.
  • 18. Adams-Campbell LL, Makambi KH, Palmer JR, Rosenberg L. Diagnostic accuracy of the Gail model in the Black Women's Health Study. Breast J 2007;13:332-6.
  • 19. Erbil N, Dundar N, Inan C, Bolukbas N. Breast cancer risk assessment using the Gail model: a Turkish study. Asian Pacific journal of cancer prevention: APJCP 2015;16:303-6.
  • 20. Kartal M, Ozcakar N, Hatipoglu S, Tan MN, Guldal AD. Breast cancer risk perceptions of Turkish women attending primary care: a cross-sectional study. BMC women's health 2014;14:152.
  • 21. Ulusoy C, Kepenekci I, Kose K, Aydıntug S, Cam R. Applicability of the Gail model for breast cancer risk assessment in Turkish female population and evaluation of breastfeeding as a risk factor. Breast cancer research and treatment 2010;120:419-24.
  • 22. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159–74.
There are 22 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Articles
Authors

Elif Altunbaş Ateş

Betül Bozkurt This is me

Ragıp Çam This is me

Publication Date March 30, 2018
Published in Issue Year 2018 Volume: 18 Issue: 1

Cite

APA Altunbaş Ateş, E., Bozkurt, B., & Çam, R. (2018). Sensitivities of the Gail, NSABP and NCI Risk Analysis Models for Turkish Women for Breast Cancer Risk Assessment. Ankara Medical Journal, 18(1), 31-39. https://doi.org/10.17098/amj.408963
AMA Altunbaş Ateş E, Bozkurt B, Çam R. Sensitivities of the Gail, NSABP and NCI Risk Analysis Models for Turkish Women for Breast Cancer Risk Assessment. Ankara Med J. March 2018;18(1):31-39. doi:10.17098/amj.408963
Chicago Altunbaş Ateş, Elif, Betül Bozkurt, and Ragıp Çam. “Sensitivities of the Gail, NSABP and NCI Risk Analysis Models for Turkish Women for Breast Cancer Risk Assessment”. Ankara Medical Journal 18, no. 1 (March 2018): 31-39. https://doi.org/10.17098/amj.408963.
EndNote Altunbaş Ateş E, Bozkurt B, Çam R (March 1, 2018) Sensitivities of the Gail, NSABP and NCI Risk Analysis Models for Turkish Women for Breast Cancer Risk Assessment. Ankara Medical Journal 18 1 31–39.
IEEE E. Altunbaş Ateş, B. Bozkurt, and R. Çam, “Sensitivities of the Gail, NSABP and NCI Risk Analysis Models for Turkish Women for Breast Cancer Risk Assessment”, Ankara Med J, vol. 18, no. 1, pp. 31–39, 2018, doi: 10.17098/amj.408963.
ISNAD Altunbaş Ateş, Elif et al. “Sensitivities of the Gail, NSABP and NCI Risk Analysis Models for Turkish Women for Breast Cancer Risk Assessment”. Ankara Medical Journal 18/1 (March 2018), 31-39. https://doi.org/10.17098/amj.408963.
JAMA Altunbaş Ateş E, Bozkurt B, Çam R. Sensitivities of the Gail, NSABP and NCI Risk Analysis Models for Turkish Women for Breast Cancer Risk Assessment. Ankara Med J. 2018;18:31–39.
MLA Altunbaş Ateş, Elif et al. “Sensitivities of the Gail, NSABP and NCI Risk Analysis Models for Turkish Women for Breast Cancer Risk Assessment”. Ankara Medical Journal, vol. 18, no. 1, 2018, pp. 31-39, doi:10.17098/amj.408963.
Vancouver Altunbaş Ateş E, Bozkurt B, Çam R. Sensitivities of the Gail, NSABP and NCI Risk Analysis Models for Turkish Women for Breast Cancer Risk Assessment. Ankara Med J. 2018;18(1):31-9.