Review
BibTex RIS Cite

Kontralateral Eğitimin Kas Kuvvetine Etkisi: Derleme

Year 2024, , 209 - 216, 31.05.2024
https://doi.org/10.46237/amusbfd.1371687

Abstract

Kontralateral eğitim, vücudun bir ekstremitesini veya bir tarafını çalıştırmanın, doğrudan eğitim olmadan bile vücudun karşı ekstremite veya tarafında iyileştirmelere yol açabileceği olgusunu tanımlar. Başka bir deyişle, bir ekstremiteden diğer ekstremitelere veya vücudun bir tarafından diğer tarafına antrenman kaynaklı etkilerin transferini ifade eder. Bu etki, kuvvet, dayanıklılık ve motor beceri antrenmanı gibi çeşitli egzersiz ve rehabilitasyon biçimlerinde gözlemlenmiştir. Örneğin, bir kişi sadece sağ koluyla kuvvet egzersizleri yaparsa, doğrudan antrenman yapmamış olsa bile sol kolunda da kuvvet artışı görülebilir. Etkilenmeyen ekstremiteyi eğiterek elde edilmesi muhtemel kazanımlar etkilenen ekstremiteye aktarılabilir ve genel fonksiyonun iyileştirilmesine yardımcı olabilir. Bu fayda aktarımı, beyinde ve omurilikte meydana gelen nöral adaptasyonlar nedeniyle gerçekleşebilir. Kontralateral eğitim, ortopedik veya nörolojik problemleri bulunan hastaların rehabilitasyon süreçlerine yardımcı olmak amaçlı fizyoterapi ve rehabilitasyon kliniklerinde son yıllarda kullanılmaktadır. Bu derlemede eğitim alan ekstremitedeki farklı kontraksiyon tiplerinin eğitim almamış ekstremite üzerindeki kas kuvveti etkisini detaylarıyla açıklamayı amaçladık.

References

  • 1. Farthing, J. P., Borowsky, R., Chilibeck, P. D., Binsted, G., and Sarty, G. E. (2007). Neuro-physiological adaptations associated with cross-education of strength. Brain Topogr, 20, 77-88.
  • 2. Hortobágyi, T., Richardson, S. P., Lomarev, M., Shamim, E., Meunier, S., Russman, H., Dang, N., and Hallett, M. (2011). Interhemispheric plasticity in humans. Med Sci Sports Exerc, 43(7), 1188.
  • 3. Scripture, E., Smith, T. L., and Brown, E. M. (1894). On the education of muscular control and power. Stud Yale Psychol Lab, 2(5).
  • 4. Laszlo, J. I., Baguley, R., and Bairstow, P. (1970). Bilateral transfer in tapping skill in the absence of peripheral information. J Mot Behav, 2(4), 261-271.
  • 5. Parlow, S. E., and Kinsbourne, M. (1989). Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain. Brain Cogn, 11(1), 98-113.
  • 6. Imamizu, H., and Shimojo, S. (1995). The locus of visual-motor learning at the task or manipulator level: implications from intermanual transfer. J Exp Psychol Hum Percept Perform, 21(4), 719.
  • 7. Dirks, M. L., Wall, B. T., and van Loon, L. J. (2018). Interventional strategies to combat muscle disuse atrophy in humans: focus on neuromuscular electrical stimulation and dietary protein. J Appl Physiol (1985), 125(3), 850-861.
  • 8. Hortobágyi, T., Dempsey, L., Fraser, D., Zheng, D., Hamilton, G., Lambert, J., and Dohm, L. (2000). Changes in muscle strength, muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans. J Physiol, 524(1), 293-304.
  • 9. Wall, B. T., Dirks, M. L., Snijders, T., Senden, J. M., Dolmans, J., and Van Loon, L. J. (2014). Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol, 210(3), 600-611.
  • 10. Yue, G. H., Bilodeau, M., Hardy, P. A., and Enoka, R. M. (1997). Task‐dependent effect of limb immobilization on the fatigability of the elbow flexor muscles in humans. Exp Physiol, 82(3), 567-592.
  • 11. Vandenborne, K., Elliott, M. A., Walter, G. A., Abdus, S., Okereke, E., Shaffer, M., Tahernia, D., and Esterhai, J. L. (1998). Longitudinal study of skeletal muscle adaptations during immobilization and rehabilitation. Muscle Nerve, 21(8), 1006-1012.
  • 12. Hather, B. M., Adams, G. R., Tesch, P. A., and Dudley, G. A. (1992). Skeletal muscle responses to lower limb suspension in humans. J Appl Physiol (1985), 72(4), 1493-1498.
  • 13. Harput, G., Ulusoy, B., Yildiz, T. I., Demirci, S., Eraslan, L., Turhan, E., and Tunay, V. B. (2019). Cross-education improves quadriceps strength recovery after ACL reconstruction: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc, 27, 68-75.
  • 14. Hortobágyi, T., Lambert, N. J., and Hill, J. P. (1997). Greater cross education following training with muscle lengthening than shortening. Med Sci Sports Exerc, 29(1), 107-112.
  • 15. Weir, J. P., Housh, D. J., Housh, T. J., and Weir, L. L. (1995). The effect of unilateral eccentric weight training and detraining on joint angle specificity, cross-training, and the bilateral deficit. J Orthop Sports Phys Ther, 22(5), 207-215.
  • 16. Valdes, O., Ramirez, C., Perez, F., Garcia‐Vicencio, S., Nosaka, K., and Penailillo, L. (2021). Contralateral effects of eccentric resistance training on immobilized arm. Scand J Med Sci Sports, 31(1), 76-90.
  • 17. Kidgell, D. J., Frazer, A. K., Rantalainen, T., Ruotsalainen, I., Ahtiainen, J., Avela, J., and Howatson, G. (2015). Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neurosci., 300, 566-575.
  • 18. Weir, J. P., Housh, D. J., Housh, T. J., and Weir, L. L. (1997). The effect of unilateral concentric weight training and detraining on joint angle specificity, cross-training, and the bilateral deficit. J Orthop Sports Phys Ther, 25(4), 264-270.
  • 19. Taylor, H. G., and Heilman, K. M. (1980). Left-hemisphere motor dominance in righthandersi. Cortex, 16(4), 587-603.
  • 20. Hellebrandt, F. A. (1951). Cross education: ipsilateral and contralateral effects of unimanual training. J Appl Physiol (1985), 4(2), 136-144.
  • 21. Munn, J., Herbert, R. D., and Gandevia, S. C. (2004). Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol (1985), 96(5), 1861-1866.
  • 22. Green, L. A., and Gabriel, D. A. (2018). The effect of unilateral training on contralateral limb strength in young, older, and patient populations: a meta-analysis of cross education. Phys. Ther. Rev., 23(4-5), 238-249.
  • 23. Farthing, J. P., Krentz, J. R., Magnus, C., Barss, T. S., Lanovaz, J. L., Cummine, J., Esopenko, C., Sarty, G. E., and Borowsky, R. (2011). Changes in functional magnetic resonance imaging cortical activation with cross education to an immobilized limb. Med Sci Sports Exerc, 43(8), 1394-1405.
  • 24. Pearce, A., Hendy, A., Bowen, W., and Kidgell, D. (2013). Corticospinal adaptations and strength maintenance in the immobilized arm following 3 weeks unilateral strength training. Scand J Med Sci Sports, 23(6), 740-748.
  • 25. Sato, S., Yoshida, R., Kiyono, R., Yahata, K., Yasaka, K., Nosaka, K., and Nakamura, M. (2021). Cross- education and detraining effects of eccentric vs. concentric resistance training of the elbow flexors. BMC Sports Sci. Med., 13(1), 1-12.
  • 26. Latella, C., Goodwill, A. M., Muthalib, M., Hendy, A. M., Major, B., Nosaka, K., and Teo, W. P. (2019). Effects of eccentric versus concentric contractions of the biceps brachii on intracortical inhibition and facilitation. Scand J Med Sci Sports, 29(3), 369-379.
  • 27. Yao, W. X., Li, J., Jiang, Z., Gao, J.-H., Franklin, C. G., Huang, Y., Lancaster, J. L., and Yue, G. H. (2014). Aging interferes central control mechanism for eccentric muscle contraction. Front. Hum. Neurosci., 6, 86.
  • 28. Westing, S. H., Seger, J. Y., Karlson, E., and Ekblom, B. (1988). Eccentric and concentric torque-velocity characteristics of the quadriceps femoris in man. Eur. J. Appl. Physiol., 58, 100-104.
  • 29. Howatson, G., Taylor, M. B., Rider, P., Motawar, B. R., McNally, M. P., Solnik, S., DeVita, P., and Hortobágyi, T. (2011). Ipsilateral motor cortical responses to TMS during lengthening and shortening of the contralateral wrist flexors. European Journal of Neuroscience, 33(5), 978-990.
  • 30. Magnus, C. R., Arnold, C. M., Johnston, G., Haas, V. D.-B., Basran, J., Krentz, J. R., and Farthing, J. P. (2013). Cross-education for improving strength and mobility after distal radius fractures: a randomized controlled trial. Eur. J. Neurosci., 94(7), 1247-1255.
  • 31. Kujirai, T., Caramia, M., Rothwell, J. C., Day, B., Thompson, P., Ferbert, A., Wroe, S., Asselman, P., and Marsden, C. D. (1993). Corticocortical inhibition in human motor cortex. Eur. J. Neurosci., 471(1), 501-519.

Effect of Contralateral Training on Muscle Strength: A Narrative Review

Year 2024, , 209 - 216, 31.05.2024
https://doi.org/10.46237/amusbfd.1371687

Abstract

Contralateral training is defined as the case where exercising one extremity or one side of the body can cause improvements to the opposite extremity or side of the body without direct training. In other words, it represents the transfer of effects due to training from one extremity to another or from one side of the body to the other. This effect is observed with exercise forms like strength, resistance and motor skills training. For example, if a person only performs strength exercises with the right arm, an increase in strength is observed in the left arm, even though direct training was not performed. The probable gains obtained by training the unaffected extremity may be transferred to the affected extremity, which may improve general function. This transfer of benefit may occur due to neural adaptations occurring in the brain and spinal cord. Contralateral training, or cross-education, has been used in recent years in the rehabilitation process for patients with orthopedic or neurological problems. In this review, we aimed to explain the effect of different contraction types in the trained extremity on muscle strength in the untrained extremity.

References

  • 1. Farthing, J. P., Borowsky, R., Chilibeck, P. D., Binsted, G., and Sarty, G. E. (2007). Neuro-physiological adaptations associated with cross-education of strength. Brain Topogr, 20, 77-88.
  • 2. Hortobágyi, T., Richardson, S. P., Lomarev, M., Shamim, E., Meunier, S., Russman, H., Dang, N., and Hallett, M. (2011). Interhemispheric plasticity in humans. Med Sci Sports Exerc, 43(7), 1188.
  • 3. Scripture, E., Smith, T. L., and Brown, E. M. (1894). On the education of muscular control and power. Stud Yale Psychol Lab, 2(5).
  • 4. Laszlo, J. I., Baguley, R., and Bairstow, P. (1970). Bilateral transfer in tapping skill in the absence of peripheral information. J Mot Behav, 2(4), 261-271.
  • 5. Parlow, S. E., and Kinsbourne, M. (1989). Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain. Brain Cogn, 11(1), 98-113.
  • 6. Imamizu, H., and Shimojo, S. (1995). The locus of visual-motor learning at the task or manipulator level: implications from intermanual transfer. J Exp Psychol Hum Percept Perform, 21(4), 719.
  • 7. Dirks, M. L., Wall, B. T., and van Loon, L. J. (2018). Interventional strategies to combat muscle disuse atrophy in humans: focus on neuromuscular electrical stimulation and dietary protein. J Appl Physiol (1985), 125(3), 850-861.
  • 8. Hortobágyi, T., Dempsey, L., Fraser, D., Zheng, D., Hamilton, G., Lambert, J., and Dohm, L. (2000). Changes in muscle strength, muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans. J Physiol, 524(1), 293-304.
  • 9. Wall, B. T., Dirks, M. L., Snijders, T., Senden, J. M., Dolmans, J., and Van Loon, L. J. (2014). Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol, 210(3), 600-611.
  • 10. Yue, G. H., Bilodeau, M., Hardy, P. A., and Enoka, R. M. (1997). Task‐dependent effect of limb immobilization on the fatigability of the elbow flexor muscles in humans. Exp Physiol, 82(3), 567-592.
  • 11. Vandenborne, K., Elliott, M. A., Walter, G. A., Abdus, S., Okereke, E., Shaffer, M., Tahernia, D., and Esterhai, J. L. (1998). Longitudinal study of skeletal muscle adaptations during immobilization and rehabilitation. Muscle Nerve, 21(8), 1006-1012.
  • 12. Hather, B. M., Adams, G. R., Tesch, P. A., and Dudley, G. A. (1992). Skeletal muscle responses to lower limb suspension in humans. J Appl Physiol (1985), 72(4), 1493-1498.
  • 13. Harput, G., Ulusoy, B., Yildiz, T. I., Demirci, S., Eraslan, L., Turhan, E., and Tunay, V. B. (2019). Cross-education improves quadriceps strength recovery after ACL reconstruction: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc, 27, 68-75.
  • 14. Hortobágyi, T., Lambert, N. J., and Hill, J. P. (1997). Greater cross education following training with muscle lengthening than shortening. Med Sci Sports Exerc, 29(1), 107-112.
  • 15. Weir, J. P., Housh, D. J., Housh, T. J., and Weir, L. L. (1995). The effect of unilateral eccentric weight training and detraining on joint angle specificity, cross-training, and the bilateral deficit. J Orthop Sports Phys Ther, 22(5), 207-215.
  • 16. Valdes, O., Ramirez, C., Perez, F., Garcia‐Vicencio, S., Nosaka, K., and Penailillo, L. (2021). Contralateral effects of eccentric resistance training on immobilized arm. Scand J Med Sci Sports, 31(1), 76-90.
  • 17. Kidgell, D. J., Frazer, A. K., Rantalainen, T., Ruotsalainen, I., Ahtiainen, J., Avela, J., and Howatson, G. (2015). Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neurosci., 300, 566-575.
  • 18. Weir, J. P., Housh, D. J., Housh, T. J., and Weir, L. L. (1997). The effect of unilateral concentric weight training and detraining on joint angle specificity, cross-training, and the bilateral deficit. J Orthop Sports Phys Ther, 25(4), 264-270.
  • 19. Taylor, H. G., and Heilman, K. M. (1980). Left-hemisphere motor dominance in righthandersi. Cortex, 16(4), 587-603.
  • 20. Hellebrandt, F. A. (1951). Cross education: ipsilateral and contralateral effects of unimanual training. J Appl Physiol (1985), 4(2), 136-144.
  • 21. Munn, J., Herbert, R. D., and Gandevia, S. C. (2004). Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol (1985), 96(5), 1861-1866.
  • 22. Green, L. A., and Gabriel, D. A. (2018). The effect of unilateral training on contralateral limb strength in young, older, and patient populations: a meta-analysis of cross education. Phys. Ther. Rev., 23(4-5), 238-249.
  • 23. Farthing, J. P., Krentz, J. R., Magnus, C., Barss, T. S., Lanovaz, J. L., Cummine, J., Esopenko, C., Sarty, G. E., and Borowsky, R. (2011). Changes in functional magnetic resonance imaging cortical activation with cross education to an immobilized limb. Med Sci Sports Exerc, 43(8), 1394-1405.
  • 24. Pearce, A., Hendy, A., Bowen, W., and Kidgell, D. (2013). Corticospinal adaptations and strength maintenance in the immobilized arm following 3 weeks unilateral strength training. Scand J Med Sci Sports, 23(6), 740-748.
  • 25. Sato, S., Yoshida, R., Kiyono, R., Yahata, K., Yasaka, K., Nosaka, K., and Nakamura, M. (2021). Cross- education and detraining effects of eccentric vs. concentric resistance training of the elbow flexors. BMC Sports Sci. Med., 13(1), 1-12.
  • 26. Latella, C., Goodwill, A. M., Muthalib, M., Hendy, A. M., Major, B., Nosaka, K., and Teo, W. P. (2019). Effects of eccentric versus concentric contractions of the biceps brachii on intracortical inhibition and facilitation. Scand J Med Sci Sports, 29(3), 369-379.
  • 27. Yao, W. X., Li, J., Jiang, Z., Gao, J.-H., Franklin, C. G., Huang, Y., Lancaster, J. L., and Yue, G. H. (2014). Aging interferes central control mechanism for eccentric muscle contraction. Front. Hum. Neurosci., 6, 86.
  • 28. Westing, S. H., Seger, J. Y., Karlson, E., and Ekblom, B. (1988). Eccentric and concentric torque-velocity characteristics of the quadriceps femoris in man. Eur. J. Appl. Physiol., 58, 100-104.
  • 29. Howatson, G., Taylor, M. B., Rider, P., Motawar, B. R., McNally, M. P., Solnik, S., DeVita, P., and Hortobágyi, T. (2011). Ipsilateral motor cortical responses to TMS during lengthening and shortening of the contralateral wrist flexors. European Journal of Neuroscience, 33(5), 978-990.
  • 30. Magnus, C. R., Arnold, C. M., Johnston, G., Haas, V. D.-B., Basran, J., Krentz, J. R., and Farthing, J. P. (2013). Cross-education for improving strength and mobility after distal radius fractures: a randomized controlled trial. Eur. J. Neurosci., 94(7), 1247-1255.
  • 31. Kujirai, T., Caramia, M., Rothwell, J. C., Day, B., Thompson, P., Ferbert, A., Wroe, S., Asselman, P., and Marsden, C. D. (1993). Corticocortical inhibition in human motor cortex. Eur. J. Neurosci., 471(1), 501-519.
There are 31 citations in total.

Details

Primary Language English
Subjects Physiotherapy
Journal Section Review Articles
Authors

Çağatay Müslüm Gökdoğan 0000-0001-7331-0606

Nevin A. Güzel 0000-0003-0467-7310

Publication Date May 31, 2024
Published in Issue Year 2024

Cite

APA Gökdoğan, Ç. M., & A. Güzel, N. (2024). Effect of Contralateral Training on Muscle Strength: A Narrative Review. Adnan Menderes Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 8(2), 209-216. https://doi.org/10.46237/amusbfd.1371687