Research Article
BibTex RIS Cite

Investigation of Some Factors Affecting Homocysteine Levels

Year 2022, Volume: 6 Issue: 3, 445 - 452, 30.09.2022
https://doi.org/10.46237/amusbfd.1065040

Abstract

Objective:  In this study, it was aimed to examine the effects of some factors such as age, gender, cancer and sedentary life on homocysteine levels.
Method: The study included 266 people aged three to 93 years. Of these 266 people, 109 are men and 157 are women. In addition, 120 out of 266 patients are bedridden (living a sedentary life) and 146 are healthy individuals. Of these 120 patients, 78 patients were diagnosed with cancer and the others were patients without a diagnosis of cancer. Homocysteine analysis was performed in the immunochemistry module of the Cobas®8000 analyzer using electrochemiluminescence technology. Correlation analysis was performed to see the relationship between homocysteine levels and age. The effects of gender, cancer and sedentary life factors were measured with the Mann-Whitney U test.
Results: A positive correlation was found between the homocysteine levels and age of the individuals included in the study (r=0.610, p<0.001). Homocysteine levels of male healthy individuals were found to be significantly higher than female healthy individuals' homocysteine levels (p=0.001). Homocysteine levels of patients diagnosed with cancer were found to be significantly higher than those of individuals not diagnosed with cancer (p<0.001). The homocysteine levels of the bedridden patients were found to be significantly higher than the homocysteine levels of the individuals who were not bedridden (p<0.001).
Conclusion: As a result, the effects of age, gender, cancer and sedentary life on homocysteine levels were determined. In addition, hyperhomocysteinemia has been observed in patients with cancer and in patients with a sedentary life.

References

  • 1. Bing F. C. (1982). Vincent du Vigneaud (1901-1978): a biographical sketch. The Journal of nutrition, 112(8), 1463–1473.
  • 2. Jakubowski H. (2006). Pathophysiological consequences of homocysteine excess. The Journal of Nutrition, 136(6 Suppl), 1741S–1749S.
  • 3. Ledda, C., Cannizzaro, E., Lovreglio, P., Vitale, E., Stufano, A., Montana, A. et al. (2019). Exposure to toxic heavy metals can ınfluence homocysteine metabolism?. Antioxidants (Basel, Switzerland), 9(1), 30.
  • 4. Kumar, A., Palfrey, H. A., Pathak, R., Kadowitz, P. J., Gettys, T. W., & Murthy, S. N. (2017). The metabolism and significance of homocysteine in nutrition and health. Nutrition & Metabolism, 14, 78.
  • 5. Kim, J., Kim, H., Roh, H., & Kwon, Y. (2018). Causes of hyperhomocysteinemia and its pathological significance. Archives of Pharmacal Research, 41(4), 372–383.
  • 6. Ganguly, P. & Alam, S. F. (2015). Role of homocysteine in the development of cardiovascular disease. Nutrition Journal, 14, 6.
  • 7. Venkatachalam, K. V. (2015). Novel cancer therapy: targeting methionine metabolism. The FASEB Journal, 29(S1), 897-932.
  • 8. Santini, V., Kantarjian, H. M., & Issa, J. P. (2001). Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Annals of Internal Medicine, 134(7), 573–586.
  • 9. Hasan, T., Arora, R., Bansal, A. K., Bhattacharya, R., Sharma, G. S., & Singh, L. R. (2019). Disturbed homocysteine metabolism is associated with cancer. Experimental & Molecular Medicine, 51(2), 1–13.
  • 10. Neuman, J. C., Albright, K. A., & Schalinske, K. L. (2013). Exercise prevents hyperhomocysteinemia in a dietary folate-restricted mouse model. Nutrition Research (New York, N.Y.), 33(6), 487–493.
  • 11. Çelik, N., & Soyal, M. (2020). The effect of exercise on homocysteine and some blood parameters in middle-aged sedentary individuals. Pedagogy of Physical Culture and Sports, 24(5), 219-226.
  • 12. Refsum, H., Smith, A. D., Ueland, P. M., Nexo, E., Clarke, R., McPartlin, J., et al. (2004). Facts and recommendations about total homocysteine determinations: an expert opinion. Clinical Chemistry, 50(1), 3–32.
  • 13. Durand, P., Prost, M., Loreau, N., Lussier-Cacan, S., & Blache, D. (2001). Impaired homocysteine metabolism and atherothrombotic disease. Laboratory Investigation; A Journal of Technical Methods and
  • Pathology, 81(5), 645–672.
  • 14. Vasan R. S. (2006). Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation, 113(19), 2335–2362.
  • 15. Guo, Y. H., Chen, F. Y., Wang, G. S., Chen, L., & Gao, W. (2008). Diet-induced hyperhomocysteinemia exacerbates vascular reverse remodeling of balloon-injured arteries in rat. Chinese Medical Journal, 121(22), 2265–2271.
  • 16. Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74.
  • 17. Zhang, D., Wen, X., Wu, W., Guo, Y., & Cui, W. (2015). Elevated homocysteine level and folate deficiency associated with increased overall risk of carcinogenesis: meta-analysis of 83 case-control studies involving 35,758 individuals. PloS one, 10(5), e0123423.
  • 18. Ng, T. P., Aung, K. C., Feng, L., Scherer, S. C., & Yap, K. B. (2012). Homocysteine, folate, vitamin B-12, and physical function in older adults: cross-sectional findings from the Singapore Longitudinal Ageing Study. The American Journal of Clinical Nutrition, 96(6), 1362–1368.
  • 19. Ravaglia, G., Forti, P., Maioli, F., Zanardi, V., Dalmonte, E., Grossi, G., et al. (2000). Blood homocysteine and vitamin B levels are not associated with cognitive skills in healthy normally ageing subjects. The Journal of Nutrition, Health & Aging, 4(4), 218–222.
  • 20. Joubert, L. M., & Manore, M. M. (2006). Exercise, nutrition, and homocysteine. International Journal of Sport Nutrition and Exercise Metabolism, 16(4), 341–361.
  • 21. Xu, R., Huang, F., Wang, Y., Liu, Q., Lv, Y., & Zhang, Q. (2020). Gender- and age-related differences in homocysteine concentration: a cross-sectional study of the general population of China. Scientific Reports, 10(1), 17401.
  • 22. Cohen, E., Margalit, I., Shochat, T., Goldberg, E., & Krause, I. (2019). Gender differences in homocysteine concentrations, a population-based cross-sectional study. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 29(1), 9–14.

Homosistein Düzeylerine Etki Eden Bazı Faktörlerin İncelenmesi

Year 2022, Volume: 6 Issue: 3, 445 - 452, 30.09.2022
https://doi.org/10.46237/amusbfd.1065040

Abstract

Amaç: Bu çalışmada, yaş, cinsiyet, kanser ve sedanter yaşam gibi bazı faktörlerin homosistein düzeyleri üzerine olan etkisinin incelenmesi amaçlanmıştır.
Yöntem: Çalışmaya, yaşları üç ile 93 arasında değişen 266 kişi dahil edildi. Bu 266 kişiden 109'u erkek, 157'si kadındır. Ayrıca 266 kişiden 120'si sedanter yaşam süren yatalak hasta ve 146'sı sağlıklı bireydir. Bu 120 hastanın 78'i kanser tanısı alan hasta, diğerleri kanser tanısı olmayan hastalardan oluşmaktadır. Homosistein analizi, elektrokemilüminesans teknolojisi kullanılarak Cobas®8000 analizörünün immünokimya modülünde yapılmıştır. Homosistein düzeyleri ile yaş arasındaki ilişkiyi görmek için korelasyon analizi yapılmıştır. Cinsiyet, kanser ve sedanter yaşam faktörlerinin etkisi Mann-Whitney U testi ile yapılmıştır.
Bulgular: Çalışmaya dahil edilen bireylerin homosistein düzeyleri ile yaşları arasında pozitif korelasyon saptandı (r=0.610, p<0.001). Erkek sağlıklı bireylerin homosistein düzeyleri, kadın sağlıklı bireylerin homosistein düzeylerinden anlamlı olarak daha yüksek saptandı (p=0.001). Kanser tanısı alan hastaların homosistein düzeyleri, kanser tanısı almayan bireylerin homosistein düzeylerinden anlamlı olarak daha yüksek saptandı (p<0.001). Yatalak hastaların homosistein düzeyleri, yatağa bağımlı olmayanların homosistein düzeylerinden anlamlı olarak daha yüksek saptandı (p<0.001).
Sonuç: Hemşirelerin Sonuç olarak, yaş, cinsiyet, kanser ve sedanter yaşamın homosistein düzeylerine etkisi saptanmıştır. Ayrıca, kanser tanısı olan hastalarda ve sedanter yaşam süren hastalarda hiperhomosisteinemi gözlenmiştir.

References

  • 1. Bing F. C. (1982). Vincent du Vigneaud (1901-1978): a biographical sketch. The Journal of nutrition, 112(8), 1463–1473.
  • 2. Jakubowski H. (2006). Pathophysiological consequences of homocysteine excess. The Journal of Nutrition, 136(6 Suppl), 1741S–1749S.
  • 3. Ledda, C., Cannizzaro, E., Lovreglio, P., Vitale, E., Stufano, A., Montana, A. et al. (2019). Exposure to toxic heavy metals can ınfluence homocysteine metabolism?. Antioxidants (Basel, Switzerland), 9(1), 30.
  • 4. Kumar, A., Palfrey, H. A., Pathak, R., Kadowitz, P. J., Gettys, T. W., & Murthy, S. N. (2017). The metabolism and significance of homocysteine in nutrition and health. Nutrition & Metabolism, 14, 78.
  • 5. Kim, J., Kim, H., Roh, H., & Kwon, Y. (2018). Causes of hyperhomocysteinemia and its pathological significance. Archives of Pharmacal Research, 41(4), 372–383.
  • 6. Ganguly, P. & Alam, S. F. (2015). Role of homocysteine in the development of cardiovascular disease. Nutrition Journal, 14, 6.
  • 7. Venkatachalam, K. V. (2015). Novel cancer therapy: targeting methionine metabolism. The FASEB Journal, 29(S1), 897-932.
  • 8. Santini, V., Kantarjian, H. M., & Issa, J. P. (2001). Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Annals of Internal Medicine, 134(7), 573–586.
  • 9. Hasan, T., Arora, R., Bansal, A. K., Bhattacharya, R., Sharma, G. S., & Singh, L. R. (2019). Disturbed homocysteine metabolism is associated with cancer. Experimental & Molecular Medicine, 51(2), 1–13.
  • 10. Neuman, J. C., Albright, K. A., & Schalinske, K. L. (2013). Exercise prevents hyperhomocysteinemia in a dietary folate-restricted mouse model. Nutrition Research (New York, N.Y.), 33(6), 487–493.
  • 11. Çelik, N., & Soyal, M. (2020). The effect of exercise on homocysteine and some blood parameters in middle-aged sedentary individuals. Pedagogy of Physical Culture and Sports, 24(5), 219-226.
  • 12. Refsum, H., Smith, A. D., Ueland, P. M., Nexo, E., Clarke, R., McPartlin, J., et al. (2004). Facts and recommendations about total homocysteine determinations: an expert opinion. Clinical Chemistry, 50(1), 3–32.
  • 13. Durand, P., Prost, M., Loreau, N., Lussier-Cacan, S., & Blache, D. (2001). Impaired homocysteine metabolism and atherothrombotic disease. Laboratory Investigation; A Journal of Technical Methods and
  • Pathology, 81(5), 645–672.
  • 14. Vasan R. S. (2006). Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation, 113(19), 2335–2362.
  • 15. Guo, Y. H., Chen, F. Y., Wang, G. S., Chen, L., & Gao, W. (2008). Diet-induced hyperhomocysteinemia exacerbates vascular reverse remodeling of balloon-injured arteries in rat. Chinese Medical Journal, 121(22), 2265–2271.
  • 16. Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74.
  • 17. Zhang, D., Wen, X., Wu, W., Guo, Y., & Cui, W. (2015). Elevated homocysteine level and folate deficiency associated with increased overall risk of carcinogenesis: meta-analysis of 83 case-control studies involving 35,758 individuals. PloS one, 10(5), e0123423.
  • 18. Ng, T. P., Aung, K. C., Feng, L., Scherer, S. C., & Yap, K. B. (2012). Homocysteine, folate, vitamin B-12, and physical function in older adults: cross-sectional findings from the Singapore Longitudinal Ageing Study. The American Journal of Clinical Nutrition, 96(6), 1362–1368.
  • 19. Ravaglia, G., Forti, P., Maioli, F., Zanardi, V., Dalmonte, E., Grossi, G., et al. (2000). Blood homocysteine and vitamin B levels are not associated with cognitive skills in healthy normally ageing subjects. The Journal of Nutrition, Health & Aging, 4(4), 218–222.
  • 20. Joubert, L. M., & Manore, M. M. (2006). Exercise, nutrition, and homocysteine. International Journal of Sport Nutrition and Exercise Metabolism, 16(4), 341–361.
  • 21. Xu, R., Huang, F., Wang, Y., Liu, Q., Lv, Y., & Zhang, Q. (2020). Gender- and age-related differences in homocysteine concentration: a cross-sectional study of the general population of China. Scientific Reports, 10(1), 17401.
  • 22. Cohen, E., Margalit, I., Shochat, T., Goldberg, E., & Krause, I. (2019). Gender differences in homocysteine concentrations, a population-based cross-sectional study. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 29(1), 9–14.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Research Articles
Authors

Recai Aci 0000-0002-3332-6619

Adem Keskin 0000-0003-1921-2583

Publication Date September 30, 2022
Published in Issue Year 2022 Volume: 6 Issue: 3

Cite

APA Aci, R., & Keskin, A. (2022). Homosistein Düzeylerine Etki Eden Bazı Faktörlerin İncelenmesi. Adnan Menderes Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 6(3), 445-452. https://doi.org/10.46237/amusbfd.1065040