Importance of Structural Abnormalities Detected by Array-Comparative Genomic Hybridization in Recurrent Miscarriage: A retrospective Study
Year 2023,
Volume: 7 Issue: 3, 631 - 639, 30.09.2023
Bertan Akar
,
Emre Köle
,
Deniz Sünnetçi Akkoyunlu
,
Merve Çakır Köle
,
Naci Çine
,
Hakan Savlı
,
Eray Çalışkan
Abstract
Objective: Chromosomal anomalies are among the most important risk factors of recurrent miscarriage. In 5.5% of the cases, one of the parents has cytogenetic anomaly in contrast to 0.55% of the general population. Recent literature data have used a‐CGH for detection of cause of abortion, but there are few studies specifically conducted to evaluate the correlation of chromosomal rearrangement and recurrent miscarriages; yet there is no clear evidence on this issue. In this study, we aimed on the correlation of chromosomal rearrangement in couples with unexplained recurrent miscarriage by a-CGH.
Methods: The karyotyping and aCGH data of 74 patients with more than five abortions were analyzed retrospectively. Cell cultures, harvesting, and G-banding at the level of 400-550 bands for karyotyping were performed following standardized procedures. The extracted maternal or paternal DNA concentration and quality were measured with the spectrophotometer and gel electrophoresis, respectively.
Results: A total of 74 patients, 50 women with male partners of 24 were included in the study. The results of a-CGH were normal for 22 males (91.7%) and 46 females (92%) and the distribution of the normal patients were not significant between the genders when patients with duplication and deletion anomalies (Duplication: 4q12, 2(p15-p14), 17q12; Deletion: 1(q21.1-q21.2), 16p11.2, Xp22.31) were compared (p > 0.05).
Conclusion: The maternal and paternal aCGH analysis yielded low rate of duplication and deletion anomalies of the chromosomes. The clinical significance of the yielded abnormalities need to be evaluated for patient consultation.
References
- 1. National Collaborating Centre for Women's and Children's Health (2012). Ectopic Pregnancy and Miscarriage: Diagnosis and Initial Management in Early Pregnancy of Ectopic Pregnancy and Miscarriage. NICE Clinical Guidelines, 154, 23.
- 2. Practice Committee of the American Society for Reproductive M. (2008). Definitions of infertility and
recurrent pregnancy loss. Fertil Steril, 89(6), 1603.
- 3. Stirrat G.M. (1990). Recurrent miscarriage. Lancet, 336(8716), 673-675.
- 4. Rai R., & Regan L. (2006). Recurrent miscarriage. Lancet, 368(9535),601-611.
- 5. Garcia-Enguidanos A., Calle M.E., Valero J., Luna S., & Dominguez-Rojas V. (2002). Risk factors in
miscarriage: A review. Eur J Obstet Gynecol Reprod Biol, 102(2), 111-119.
- 6. Alijotas-Reig J., & Garrido-Gimenez C. (2013). Current concepts and new trends in the diagnosis and
management of recurrent miscarriage. Obstet Gynecol Surv, 68(6), 445-466.
- 7. Sierra S, & Stephenson M.( 2006). Genetics of recurrent pregnancy loss. Semin Reprod Med, 24(1), 17-24.
- 8. Practice Committee of the American Society for Reproductive M. (2012). Evaluation and treatment of
recurrent pregnancy loss: a committee opinion. Fertil Steril, 98(5), 1103-1111.
- 9. Menasha J., Levy B., Hirschhorn K., & Kardon N.B.( 2005). Incidence and spectrum of chromosome
abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med, 7(4), 251-263.
- 10. Carp H., Feldman B., Oelsner G., & Schiff E.( 2004). Parental karyotype and subsequent live births in
recurrent miscarriage. Fertil Steril, 81(5), 1296-1301.
- 11. Nagaishi M., Yamamoto T., Iinuma K., Shimomura K., Berend S.A., & Knops J. (2004). Chromosome
abnormalities identified in 347 spontaneous abortions collected in Japan. J Obstet Gynaecol Res, 30(3) ,237-
241.
- 12. Hyde K.J., & Schust D.J. (2015). Genetic considerations in recurrent pregnancy loss. Cold Spring Harb
Perspect Med, 5(3), a023119.
- 13. Hu Y., Chen X., Chen L.L., Xu Z.F., Wang X., & Cui H.( 2006). Comparative genomic hybridization analysis of
spontaneous abortion. Int J Gynaecol Obstet, 92(1), 52-57.
- 14. Oostlander A.E., Meijer G.A., & Ylstra B. (2004). Microarray-based comparative genomic hybridization and
its applications in human genetics. Clin Genet, 66(6), 488-495.
- 15. Bagheri H., Mercier E., Qiao Y., Stephenson M.D., & Rajcan-Separovic E. (2015). Genomic characteristics of
miscarriage copy number variants. Mol Hum Reprod, 21(8), 655-661.
- 16. Dhillon R.K., Hillman S.C., Morris R.K., McMullan D., Williams D., Coomarasamy A. et al. (2014). Additional
information from chromosomal microarray analysis (CMA) over conventional karyotyping when diagnosing
chromosomal abnormalities in miscarriage: a systematic review and meta-analysis. BJOG, 121(1), 11-21.
- 17. Donaghue C., Davies N., Ahn J.W., Thomas H., Ogilvie C.M., & Mann K. (2017). Efficient and cost-effective
genetic analysis of products of conception and fetal tissues using a QF-PCR/array CGH strategy; five years
of data. Mol Cytogenet, 10, 12.
- 18. Ozawa N., Sago H., Matsuoka K., Maruyama T., Migita O., Aizu Y. et al. (2016). Cytogenetic analysis of
spontaneously discharged products of conception by array-based comparative genomic hybridization.
Springerplus, 5(1), 874.
- 19. Wou K., Hyun Y., Chitayat D., Vlasschaert M., Chong K., Wasim S. et al. (2016). Analysis of tissue from
products of conception and perinatal losses using QF-PCR and microarray: A three-year retrospective study
resulting in an efficient protocol. Eur J Med Genet, 59(8), 417-424.
- 20. Sudhir N., Kaur T., Beri A., & Kaur A. (2016). Cytogenetic analysis in couples with recurrent miscarriages: a
retrospective study from Punjab, north India. J Genet, 95(4), 887-894.
- 21. De Krom G., Arens Y.H., Coonen E., Van Ravenswaaij-Arts C.M., Meijer-Hoogeveen M., Evers J.L. et al. (2015).
Recurrent miscarriage in translocation carriers: no differences in clinical characteristics between couples
who accept and couples who decline PGD. Hum Reprod, 30(2), 484-489.
- 22. Najafi K., Gholami S., Moshtagh A., Bazrgar M., Sadatian N., Abbasi G. et al. (2019). Chromosomal
aberrations in pregnancy and fetal loss: Insight on the effect of consanguinity, review of 1625 cases. Mol
Genet Genomic Med, 7(8), e820.
- 23. Moorhead P.S., Nowell P.C., Mellman W.J., Battips D.M., & Hungerford D.A. (1960). Chromosome
preparations of leukocytes cultured from human peripheral blood. Exp Cell Res, 20, 613-616.
- 24. Chen C.P., Su Y.N., Chen Y.T., Chen W.L., Hsu L.J., & Wang W. (2011). Prenatal diagnosis of directly
transmitted benign 4q12-q13.1 quadruplication associated with tandem segmental amplifications of the
LPHN3 gene. Taiwan J Obstet Gynecol, 50(3), 401-404.
- 25. Kasnauskiene J., Cimbalistiene L., Utkus A., Ciuladaite Z., Preiksaitiene E., Peciulyte A. et al. (2013). Two new
de novo interstitial duplications covering 2p14-p22.1: clinical and molecular analysis. Cytogenet Genome Res,
139(1), 52-58.
- 26. Brisset S., Capri Y., Briand-Suleau A., Tosca L., Gras D., Fauret-Amsellem A.L. et al. (2015). Inherited
1q21.1q21.2 duplication and 16p11.2 deletion: a two-hit case with more severe clinical manifestations. Eur J Med
Genet, 58(9), 497-501.
- 27. Hung C., Ayabe R.I., Wang C., Frausto R.F., Aldave A.J. (2013). Pre-Descemet corneal dystrophy and X-
linked ichthyosis associated with deletion of Xp22.31 containing the STS gene. Cornea, 32(9), 1283-1287.
- 28. Carrascosa-Romero M.C., Suela J., Alfaro-Ponce B., Cepillo-Boluda A.J. (2012). [X-chromosome-linked
ichthyosis associated to epilepsy, hyperactivity, autism and mental retardation, due to the Xp22.31
microdeletion]. Rev Neurol, 54(4), 241-248.
- 29. Ben Khelifa H., Soyah N., Ben-Abdallah-Bouhjar I., Gritly R., Sanlaville D., Elghezal H. et al. (2013). Xp22.3
interstitial deletion: a recognizable chromosomal abnormality encompassing VCX3A and STS genes in a
patient with X-linked ichthyosis and mental retardation. Gene, 527(2), 578-583.
- 30. Malla T.M., Pandith A.A., Dar F.A., Zargar M.H., Shah Z.A. (2014). De novo Xp terminal deletion in a triple X
female with recurrent spontaneous abortions: a case report. J Genet, 93(3), 819-822.
- 31. Li R., Fu F., Zhang Y.L., Li D.Z., Liao C. (2014). Prenatal diagnosis of 17q12 duplication and deletion syndrome
in two fetuses with congenital anomalies. Taiwan J Obstet Gynecol, 53(4), 579-582.
- 32. Rasmussen M., Vestergaard E.M., Graakjaer J., Petkov Y., Bache I., Fagerberg C. et al. (2016). 17q12 deletion
and duplication syndrome in Denmark-A clinical cohort of 38 patients and review of the literature. Am J Med
Genet A, 170(11),2934-2942.
- 33. Daniely M., Aviram-Goldring A., Barkai G., & Goldman B. (1998). Detection of chromosomal aberration in
fetuses arising from recurrent spontaneous abortion by comparative genomic hybridization. Hum Reprod,
13(4), 805-809.
- 34. Barrett I.J., Lomax B.L., Loukianova T., Tang S.S., Lestou V.S., & Kalousek D.K. (2001). Comparative genomic
hybridization: a new tool for reproductive pathology. Arch Pathol Lab Med, 125(1), 81-84.
- 35. Bell K.A., Van Deerlin P.G., Haddad B.R., & Feinberg R.F. (1999). Cytogenetic diagnosis of "normal 46,XX"
karyotypes in spontaneous abortions frequently may be misleading. Fertil Steril, 71(2), 334-341.
- 36. Lomax B., Tang S., Separovic E., Phillips D., Hillard E., Thomson T. et al. (2000). Comparative genomic
hybridization in combination with flow cytometry improves results of cytogenetic analysis of spontaneous abortions. Am J Hum Genet, 66(5), 1516-1521.
- 37. Bell K.A., Van Deerlin P.G., Feinberg R.F., du Manoir S., & Haddad B.R. (2001). Diagnosis of aneuploidy in
archival, paraffin-embedded pregnancy-loss tissues by comparative genomic hybridization. Fertil Steril,
75(2), 374-379.
- 38. Colley E., Hamilton S., Smith P., Morgan N.V., Coomarasamy A., & Allen S. (2019). Potential genetic causes
of miscarriage in euploid pregnancies: a systematic review. Hum Reprod Update, 25(4), 452-472.
- 39. Schaeffer A.J., Chung J., Heretis K., Wong A., Ledbetter D.H., Lese Martin C. (2004). Comparative genomic
hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in
spontaneous miscarriages. Am J Hum Genet, 74(6), 1168-1174.
- 40. Jia Y., Zhao H., Shi D., Peng W., Xie L., Wang W. et al. (2014). Genetic effects of a 13q31.1 microdeletion
detected by noninvasive prenatal testing (NIPT). Int J Clin Exp Pathol, 7(10), 7003-7011.
Tekrarlayan Düşüklerde Array Karşılaştırmalı Genomic Hibridizasyonun Yapısal Anomalileri Saptamadaki Önemi: Retrospektif Bir Çalışma
Year 2023,
Volume: 7 Issue: 3, 631 - 639, 30.09.2023
Bertan Akar
,
Emre Köle
,
Deniz Sünnetçi Akkoyunlu
,
Merve Çakır Köle
,
Naci Çine
,
Hakan Savlı
,
Eray Çalışkan
Abstract
Amaç: Kromozomal anomaliler, tekrarlayan düşüklerin en önemli risk faktörleri arasındadır. Vakaların %5.5'inde, ebeveynlerden birinin sitogenetik anormalliği mevcuttur ki bu oran genel nüfusa göre %0.55'tir. Son literatür verileri, düşüklere neden olan sebeplerin tespiti için a‐CGH yöntemini kullanmış olsa da, kromozomal yeniden düzenlemenin ve tekrarlayan düşüklerin korelasyonunu değerlendirmek için özel olarak yapılan az sayıda çalışma bulunmaktadır; ancak bu konuda net bir kanıt bulunmamaktadır. Bu çalışmada, a-CGH yöntemi kullanılarak açıklanamayan tekrarlayan düşükleri olan çiftlerde kromozomal yeniden düzenlenmenin korelasyonunu amaçladık.
Yöntem: Beşten fazla düşüğü olan 74 hastanın karyotipleme ve a-CGH verileri retrospektif olarak analiz edildi. Hücre kültürleri, karyotipleme için standartlaşmış prosedürler takiben 400-550 bant düzeyinde hücre hasadı ve G-bantlama işlemleri gerçekleştirildi. Anne veya baba DNA'sının ekstrakte edilen miktarı ve kalitesi sırasıyla spektrofotometre ve jel elektroforezi ile ölçüldü.
Bulgular: Toplam 74 hasta arasında, çalışmaya 50 kadın ve 24 erkek dahil edildi. A-CGH sonuçları, erkeklerin 22'sinde (%91.7) ve kadınların 46'sında (%92) normal olarak bulundu ve normal hastaların, duplikasyon ve delesyon anormallikleri (Duplikasyon: 4q12, 2(p15-p14), 17q12; Delesyon: 1(q21.1-q21.2), 16p11.2, Xp22.31) olan hastalarla karşılaştırıldığında dağılımı anlamlı değildi (P > 0.05).
Sonuç: Anne ve baba adaylarının kromozmlarının aCGH ile araştırılması sonucunda düşük oranda delesyon ve dublikasyon anormallikleri izlenmiştir. Hastalara gerekli danışmanlığın verilebilmesi için bu anormalliklerin klinik önemi araştırılmalıdır.
References
- 1. National Collaborating Centre for Women's and Children's Health (2012). Ectopic Pregnancy and Miscarriage: Diagnosis and Initial Management in Early Pregnancy of Ectopic Pregnancy and Miscarriage. NICE Clinical Guidelines, 154, 23.
- 2. Practice Committee of the American Society for Reproductive M. (2008). Definitions of infertility and
recurrent pregnancy loss. Fertil Steril, 89(6), 1603.
- 3. Stirrat G.M. (1990). Recurrent miscarriage. Lancet, 336(8716), 673-675.
- 4. Rai R., & Regan L. (2006). Recurrent miscarriage. Lancet, 368(9535),601-611.
- 5. Garcia-Enguidanos A., Calle M.E., Valero J., Luna S., & Dominguez-Rojas V. (2002). Risk factors in
miscarriage: A review. Eur J Obstet Gynecol Reprod Biol, 102(2), 111-119.
- 6. Alijotas-Reig J., & Garrido-Gimenez C. (2013). Current concepts and new trends in the diagnosis and
management of recurrent miscarriage. Obstet Gynecol Surv, 68(6), 445-466.
- 7. Sierra S, & Stephenson M.( 2006). Genetics of recurrent pregnancy loss. Semin Reprod Med, 24(1), 17-24.
- 8. Practice Committee of the American Society for Reproductive M. (2012). Evaluation and treatment of
recurrent pregnancy loss: a committee opinion. Fertil Steril, 98(5), 1103-1111.
- 9. Menasha J., Levy B., Hirschhorn K., & Kardon N.B.( 2005). Incidence and spectrum of chromosome
abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med, 7(4), 251-263.
- 10. Carp H., Feldman B., Oelsner G., & Schiff E.( 2004). Parental karyotype and subsequent live births in
recurrent miscarriage. Fertil Steril, 81(5), 1296-1301.
- 11. Nagaishi M., Yamamoto T., Iinuma K., Shimomura K., Berend S.A., & Knops J. (2004). Chromosome
abnormalities identified in 347 spontaneous abortions collected in Japan. J Obstet Gynaecol Res, 30(3) ,237-
241.
- 12. Hyde K.J., & Schust D.J. (2015). Genetic considerations in recurrent pregnancy loss. Cold Spring Harb
Perspect Med, 5(3), a023119.
- 13. Hu Y., Chen X., Chen L.L., Xu Z.F., Wang X., & Cui H.( 2006). Comparative genomic hybridization analysis of
spontaneous abortion. Int J Gynaecol Obstet, 92(1), 52-57.
- 14. Oostlander A.E., Meijer G.A., & Ylstra B. (2004). Microarray-based comparative genomic hybridization and
its applications in human genetics. Clin Genet, 66(6), 488-495.
- 15. Bagheri H., Mercier E., Qiao Y., Stephenson M.D., & Rajcan-Separovic E. (2015). Genomic characteristics of
miscarriage copy number variants. Mol Hum Reprod, 21(8), 655-661.
- 16. Dhillon R.K., Hillman S.C., Morris R.K., McMullan D., Williams D., Coomarasamy A. et al. (2014). Additional
information from chromosomal microarray analysis (CMA) over conventional karyotyping when diagnosing
chromosomal abnormalities in miscarriage: a systematic review and meta-analysis. BJOG, 121(1), 11-21.
- 17. Donaghue C., Davies N., Ahn J.W., Thomas H., Ogilvie C.M., & Mann K. (2017). Efficient and cost-effective
genetic analysis of products of conception and fetal tissues using a QF-PCR/array CGH strategy; five years
of data. Mol Cytogenet, 10, 12.
- 18. Ozawa N., Sago H., Matsuoka K., Maruyama T., Migita O., Aizu Y. et al. (2016). Cytogenetic analysis of
spontaneously discharged products of conception by array-based comparative genomic hybridization.
Springerplus, 5(1), 874.
- 19. Wou K., Hyun Y., Chitayat D., Vlasschaert M., Chong K., Wasim S. et al. (2016). Analysis of tissue from
products of conception and perinatal losses using QF-PCR and microarray: A three-year retrospective study
resulting in an efficient protocol. Eur J Med Genet, 59(8), 417-424.
- 20. Sudhir N., Kaur T., Beri A., & Kaur A. (2016). Cytogenetic analysis in couples with recurrent miscarriages: a
retrospective study from Punjab, north India. J Genet, 95(4), 887-894.
- 21. De Krom G., Arens Y.H., Coonen E., Van Ravenswaaij-Arts C.M., Meijer-Hoogeveen M., Evers J.L. et al. (2015).
Recurrent miscarriage in translocation carriers: no differences in clinical characteristics between couples
who accept and couples who decline PGD. Hum Reprod, 30(2), 484-489.
- 22. Najafi K., Gholami S., Moshtagh A., Bazrgar M., Sadatian N., Abbasi G. et al. (2019). Chromosomal
aberrations in pregnancy and fetal loss: Insight on the effect of consanguinity, review of 1625 cases. Mol
Genet Genomic Med, 7(8), e820.
- 23. Moorhead P.S., Nowell P.C., Mellman W.J., Battips D.M., & Hungerford D.A. (1960). Chromosome
preparations of leukocytes cultured from human peripheral blood. Exp Cell Res, 20, 613-616.
- 24. Chen C.P., Su Y.N., Chen Y.T., Chen W.L., Hsu L.J., & Wang W. (2011). Prenatal diagnosis of directly
transmitted benign 4q12-q13.1 quadruplication associated with tandem segmental amplifications of the
LPHN3 gene. Taiwan J Obstet Gynecol, 50(3), 401-404.
- 25. Kasnauskiene J., Cimbalistiene L., Utkus A., Ciuladaite Z., Preiksaitiene E., Peciulyte A. et al. (2013). Two new
de novo interstitial duplications covering 2p14-p22.1: clinical and molecular analysis. Cytogenet Genome Res,
139(1), 52-58.
- 26. Brisset S., Capri Y., Briand-Suleau A., Tosca L., Gras D., Fauret-Amsellem A.L. et al. (2015). Inherited
1q21.1q21.2 duplication and 16p11.2 deletion: a two-hit case with more severe clinical manifestations. Eur J Med
Genet, 58(9), 497-501.
- 27. Hung C., Ayabe R.I., Wang C., Frausto R.F., Aldave A.J. (2013). Pre-Descemet corneal dystrophy and X-
linked ichthyosis associated with deletion of Xp22.31 containing the STS gene. Cornea, 32(9), 1283-1287.
- 28. Carrascosa-Romero M.C., Suela J., Alfaro-Ponce B., Cepillo-Boluda A.J. (2012). [X-chromosome-linked
ichthyosis associated to epilepsy, hyperactivity, autism and mental retardation, due to the Xp22.31
microdeletion]. Rev Neurol, 54(4), 241-248.
- 29. Ben Khelifa H., Soyah N., Ben-Abdallah-Bouhjar I., Gritly R., Sanlaville D., Elghezal H. et al. (2013). Xp22.3
interstitial deletion: a recognizable chromosomal abnormality encompassing VCX3A and STS genes in a
patient with X-linked ichthyosis and mental retardation. Gene, 527(2), 578-583.
- 30. Malla T.M., Pandith A.A., Dar F.A., Zargar M.H., Shah Z.A. (2014). De novo Xp terminal deletion in a triple X
female with recurrent spontaneous abortions: a case report. J Genet, 93(3), 819-822.
- 31. Li R., Fu F., Zhang Y.L., Li D.Z., Liao C. (2014). Prenatal diagnosis of 17q12 duplication and deletion syndrome
in two fetuses with congenital anomalies. Taiwan J Obstet Gynecol, 53(4), 579-582.
- 32. Rasmussen M., Vestergaard E.M., Graakjaer J., Petkov Y., Bache I., Fagerberg C. et al. (2016). 17q12 deletion
and duplication syndrome in Denmark-A clinical cohort of 38 patients and review of the literature. Am J Med
Genet A, 170(11),2934-2942.
- 33. Daniely M., Aviram-Goldring A., Barkai G., & Goldman B. (1998). Detection of chromosomal aberration in
fetuses arising from recurrent spontaneous abortion by comparative genomic hybridization. Hum Reprod,
13(4), 805-809.
- 34. Barrett I.J., Lomax B.L., Loukianova T., Tang S.S., Lestou V.S., & Kalousek D.K. (2001). Comparative genomic
hybridization: a new tool for reproductive pathology. Arch Pathol Lab Med, 125(1), 81-84.
- 35. Bell K.A., Van Deerlin P.G., Haddad B.R., & Feinberg R.F. (1999). Cytogenetic diagnosis of "normal 46,XX"
karyotypes in spontaneous abortions frequently may be misleading. Fertil Steril, 71(2), 334-341.
- 36. Lomax B., Tang S., Separovic E., Phillips D., Hillard E., Thomson T. et al. (2000). Comparative genomic
hybridization in combination with flow cytometry improves results of cytogenetic analysis of spontaneous abortions. Am J Hum Genet, 66(5), 1516-1521.
- 37. Bell K.A., Van Deerlin P.G., Feinberg R.F., du Manoir S., & Haddad B.R. (2001). Diagnosis of aneuploidy in
archival, paraffin-embedded pregnancy-loss tissues by comparative genomic hybridization. Fertil Steril,
75(2), 374-379.
- 38. Colley E., Hamilton S., Smith P., Morgan N.V., Coomarasamy A., & Allen S. (2019). Potential genetic causes
of miscarriage in euploid pregnancies: a systematic review. Hum Reprod Update, 25(4), 452-472.
- 39. Schaeffer A.J., Chung J., Heretis K., Wong A., Ledbetter D.H., Lese Martin C. (2004). Comparative genomic
hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in
spontaneous miscarriages. Am J Hum Genet, 74(6), 1168-1174.
- 40. Jia Y., Zhao H., Shi D., Peng W., Xie L., Wang W. et al. (2014). Genetic effects of a 13q31.1 microdeletion
detected by noninvasive prenatal testing (NIPT). Int J Clin Exp Pathol, 7(10), 7003-7011.