Research Article
BibTex RIS Cite

Investigation of Microbial Flora of Dried Figs Unpacked Spices Sold

Year 2025, Volume: 9 Issue: 3, 394 - 407, 30.09.2025
https://doi.org/10.46237/amusbfd.1602552

Abstract

Objective: Dried fruits are widely consumed due to their high nutritional value and long shelf life. However, dried fruits sold in open-air markets under unhygienic conditions can become contaminated with environmental microorganisms, posing a risk to public health. The aim of this study is to evaluate the presence of potentially pathogenic bacteria that may pose a risk to public health as a result of cross-contamination in dried fig samples sold openly in Aydın province using metagenomic methods.
Method: The research was conducted in collaboration with the Food Chemistry Laboratory of the Faculty of Health Sciences and the Recombinant DNA and Recombinant Protein Application and Research Center at Aydın Adnan Menderes University. Between December 1, 2021, and April 6, 2022, a total of 10 dried fig samples were randomly collected from four different markets in Aydın province.
Results: As a result of metagenomic analysis, microorganisms belonging to 61 phyla, 134 classes, 315 orders, 500 families, and 1508 genera were identified. Among the most frequently encountered potential pathogenic bacterial genera in the samples were: Burkholderia-Caballeronia-Paraburkholderia, Serratia, Escherichia-Shigella, Pseudomonas, Streptococcus, Alcaligenes, Enterobacter, Acinetobacter, Staphylococcus, Aeromonas, Bacillus, and Klebsiella.
Conclusion: This study revealed the presence of various bacterial species in openly sold dried figs that may pose a threat to public health. The findings clearly demonstrate that open-air selling practices carry significant risks in terms of food safety. However, in order to enhance the generalizability of these results, further studies involving larger sample sizes and different regions are needed.

References

  • 1. Somuncuoğlu, İ (2007). Kuru incirlerde Siklopiazonik Asit varlığının ve miktarının belirlenmesi, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, 169s.
  • 2. Soltana, H., Pinon, A., Limami, Y., Zaid, Y., Khalki, L., Zaid, N., et al. (2019). Antitumoral activity of Ficus carica L. On colorectal cancer cell lines. Cellular and Molecular Biology, 65(5). DOI: 10.14715/cmb/2019.65.5.9
  • 3. Lederberg, J. (1997). Infectious disease as an evolutionary paradigm. Emerging Infectious Diseases, 3(4), 417-423. DOI: 10.3201/eid0304.970402
  • 4. Olsen, S. J., MacKinon, L. C., Goulding, J. S., Bean, N. H., & Slutsker, L. (2000). Surveillance for foodborne-disease outbreaks, United States, 1993-1997.
  • 5. Nuorti, J., Niskanen, T., Hallanvuo, S., Mikkola , J., Kela, E., Hatakka, M. Et al. (2004). A wide spread outbreak of yersinia pseudotuberculosis o:3 ınfection from ıceberg lettuce,. Infectious Diseases,(5), 189. DOI: 10.1086/381766
  • 6. Noormohamed, A., and Fakhr, M. (2014). Outbreak of Campylobacter enteritis associated with cross-contamination of food – Oklahoma. The Open Mikrobiyology Journal(8), 130-137. DOI: 10.2174/1874285801408010130
  • 7. URL-1: https://support.illumina.com,“Documents/Documentation/ Chemistry documentation” 16S Metagenomic Sequencing Library Prepation (Erişim 23 Temmuz 2024).
  • 8. Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. (2014). “Trimmomatic: a flexible trimmer for Illumina sequence data.” Bioinformatics 30 (15), 2114–20. DOI: 10.1093/bioinformatics/btu170
  • 9. Wood, Derrick E, Jennifer Lu, and Ben Langmead. (2019). “Improved Metagenomic Analysis with Kraken 2.” Genome Biology. 20 (1): 257. DOI: 10.1186/s13059-019-1891-0
  • 10. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research, 41(D1), D590- D596. DOI: 10.1093/nar/gks1219
  • 11. Simpson, E. H. (1949). Measurement of diversity. nature, 163(4148), 688-688. DOI: 10.1038/163688a0
  • 12. Spellerberg, Ian F., and Peter J. Fedor. (2003). “A Tribute to Claude Shannon (1916-2001) and a Plea for More Rigorous Use of Species Richness, Species Diversity and the ‘Shannon-Wiener’ Index.” Global Ecology and Biogeography. DOI: 10.1046/j.1466-822x.2003.00015.x
  • 13. Fedor, P., & Zvaríková, M. (2019). Biodiversity indices. Encycl. Ecol, 2, 337-346. DOI: 10.1016/B978-0-12-409548-9.10558-5
  • 14. Kunakom, S., & Eustáquio, A. S. (2019). Burkholderia as a source of natural products. Journal of natural products, 82(7), 2018-2037. DOI: 10.1021/acs.jnatprod.8b01068
  • 15. Gündüz, M., Çiçek, Ş. K., & Bekteş, A. (2024). Escherichia coli Kaynaklı Gıda Enfeksiyonları. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 38(2), 487-508. DOI: 10.20479/bursauludagziraat.1518397
  • 16. Jo, Y., Back, C. G., Choi, H., Cho, W. K. (2020). Comparative microbiome study of mummified peach fruits by metagenomics and metatranscriptomics. Plants, 9(8), 1052. DOI: 10.3390/plants9081052
  • 17. Vermote, L., Verce, M., Mozzi, F., De Vuyst, L., & Weckx, S. (2022). Microbiomes associated with the surfaces of Northern Argentinian fruits show a wide species diversity. Frontiers in Microbiology, 13, 872281. DOI: 10.3389/fmicb.2022.872281
  • 18. Abdelfattah, A., Freilich, S., Bartuv, R., Zhimo, V. Y., Kumar, A., Biasi, A. et al. (2021). Global analysis of the apple fruit microbiome: are all apples the same. Environmental Microbiology, 23(10), 6038-6055. . DOI: 10.1111/1462-2920.15469

Açıkta Satılan Kuru İncirlerin Mikrobiyal Florasının Araştırılması

Year 2025, Volume: 9 Issue: 3, 394 - 407, 30.09.2025
https://doi.org/10.46237/amusbfd.1602552

Abstract

Amaç: Kuru meyveler, yüksek besin değerleri ve uzun raf ömürleri nedeniyle yaygın olarak tüketilmektedir. Ancak hijyenik olmayan koşullarda açıkta satışa sunulan kuru meyveler, çevresel kaynaklı mikroorganizmalarla kontamine olabilmekte ve bu durum halk sağlığı açısından risk teşkil etmektedir. Bu çalışmanın amacı, Aydın ilinde açıkta satılan kuru incir örneklerinde, çapraz kontaminasyon sonucu oluşabilecek ve halk sağlığı açısından risk teşkil edebilecek patojen bakterilerin varlığını metagenomik yöntemlerle değerlendirmektir.
Yöntem: Araştırma, Aydın Adnan Menderes Üniversitesi Sağlık Bilimleri Fakültesi Besin Kimyası Laboratuvarı ile Rekombinant DNA ve Rekombinant Protein Uygulama ve Araştırma Merkezi iş birliğiyle yürütülmüştür. Çalışmada, 1 Aralık 2021–6 Nisan 2022 tarihleri arasında Aydın ilinde yer alan dört farklı pazardan toplam 10 kuru incir örneği rastgele seçilerek temin edilmiştir.
Bulgular: Metagenomik analiz sonucunda 61 şube, 134 sınıf, 315 takım, 500 aile ve 1508 cinse ait mikroorganizma tanımlanmıştır. Örneklerde en sık karşılaşılan potansiyel patojen bakteriler arasında Burkholderia-Caballeronia-Paraburkholderia, Serratia, Escherichia-Shigella, Pseudomonas, Streptococcus, Alcaligenes, Enterobacter, Acinetobacter, Staphylococcus, Aeromonas, Bacillus ve Klebsiella gibi cinsler yer almaktadır.
Sonuç: Çalışma, açıkta satılan kuru incirlerde halk sağlığını tehdit edebilecek çeşitli bakteri türlerinin varlığını ortaya koymuştur. Elde edilen veriler, açıkta satışın gıda güvenliği açısından oluşturduğu riskleri gözler önüne sermektedir ancak sonuçların genellenebilir olması için daha fazla araştırma yapılmasına ihtiyaç vardır.

References

  • 1. Somuncuoğlu, İ (2007). Kuru incirlerde Siklopiazonik Asit varlığının ve miktarının belirlenmesi, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, 169s.
  • 2. Soltana, H., Pinon, A., Limami, Y., Zaid, Y., Khalki, L., Zaid, N., et al. (2019). Antitumoral activity of Ficus carica L. On colorectal cancer cell lines. Cellular and Molecular Biology, 65(5). DOI: 10.14715/cmb/2019.65.5.9
  • 3. Lederberg, J. (1997). Infectious disease as an evolutionary paradigm. Emerging Infectious Diseases, 3(4), 417-423. DOI: 10.3201/eid0304.970402
  • 4. Olsen, S. J., MacKinon, L. C., Goulding, J. S., Bean, N. H., & Slutsker, L. (2000). Surveillance for foodborne-disease outbreaks, United States, 1993-1997.
  • 5. Nuorti, J., Niskanen, T., Hallanvuo, S., Mikkola , J., Kela, E., Hatakka, M. Et al. (2004). A wide spread outbreak of yersinia pseudotuberculosis o:3 ınfection from ıceberg lettuce,. Infectious Diseases,(5), 189. DOI: 10.1086/381766
  • 6. Noormohamed, A., and Fakhr, M. (2014). Outbreak of Campylobacter enteritis associated with cross-contamination of food – Oklahoma. The Open Mikrobiyology Journal(8), 130-137. DOI: 10.2174/1874285801408010130
  • 7. URL-1: https://support.illumina.com,“Documents/Documentation/ Chemistry documentation” 16S Metagenomic Sequencing Library Prepation (Erişim 23 Temmuz 2024).
  • 8. Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. (2014). “Trimmomatic: a flexible trimmer for Illumina sequence data.” Bioinformatics 30 (15), 2114–20. DOI: 10.1093/bioinformatics/btu170
  • 9. Wood, Derrick E, Jennifer Lu, and Ben Langmead. (2019). “Improved Metagenomic Analysis with Kraken 2.” Genome Biology. 20 (1): 257. DOI: 10.1186/s13059-019-1891-0
  • 10. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research, 41(D1), D590- D596. DOI: 10.1093/nar/gks1219
  • 11. Simpson, E. H. (1949). Measurement of diversity. nature, 163(4148), 688-688. DOI: 10.1038/163688a0
  • 12. Spellerberg, Ian F., and Peter J. Fedor. (2003). “A Tribute to Claude Shannon (1916-2001) and a Plea for More Rigorous Use of Species Richness, Species Diversity and the ‘Shannon-Wiener’ Index.” Global Ecology and Biogeography. DOI: 10.1046/j.1466-822x.2003.00015.x
  • 13. Fedor, P., & Zvaríková, M. (2019). Biodiversity indices. Encycl. Ecol, 2, 337-346. DOI: 10.1016/B978-0-12-409548-9.10558-5
  • 14. Kunakom, S., & Eustáquio, A. S. (2019). Burkholderia as a source of natural products. Journal of natural products, 82(7), 2018-2037. DOI: 10.1021/acs.jnatprod.8b01068
  • 15. Gündüz, M., Çiçek, Ş. K., & Bekteş, A. (2024). Escherichia coli Kaynaklı Gıda Enfeksiyonları. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 38(2), 487-508. DOI: 10.20479/bursauludagziraat.1518397
  • 16. Jo, Y., Back, C. G., Choi, H., Cho, W. K. (2020). Comparative microbiome study of mummified peach fruits by metagenomics and metatranscriptomics. Plants, 9(8), 1052. DOI: 10.3390/plants9081052
  • 17. Vermote, L., Verce, M., Mozzi, F., De Vuyst, L., & Weckx, S. (2022). Microbiomes associated with the surfaces of Northern Argentinian fruits show a wide species diversity. Frontiers in Microbiology, 13, 872281. DOI: 10.3389/fmicb.2022.872281
  • 18. Abdelfattah, A., Freilich, S., Bartuv, R., Zhimo, V. Y., Kumar, A., Biasi, A. et al. (2021). Global analysis of the apple fruit microbiome: are all apples the same. Environmental Microbiology, 23(10), 6038-6055. . DOI: 10.1111/1462-2920.15469
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Public Health (Other)
Journal Section Research Articles
Authors

Ezgi Ünlü 0009-0006-7886-2331

Bülent Bozdoğan 0000-0003-2469-9728

Serdal Öğüt 0000-0001-8863-7249

Publication Date September 30, 2025
Submission Date December 16, 2024
Acceptance Date May 6, 2025
Published in Issue Year 2025 Volume: 9 Issue: 3

Cite

APA Ünlü, E., Bozdoğan, B., & Öğüt, S. (2025). Açıkta Satılan Kuru İncirlerin Mikrobiyal Florasının Araştırılması. Adnan Menderes Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 9(3), 394-407. https://doi.org/10.46237/amusbfd.1602552