Research Article
BibTex RIS Cite
Year 2020, , 46 - 56, 08.05.2020
https://doi.org/10.18615/anadolu.727202

Abstract

Prunus divaricata subsp. divaricata is a plant that is believed to have medicinal benefits and is used for this purpose as well as consumed by the local people as food. Despite its economic potential wild P. divaricata subsp. divaricata has still not domesticated and the fruits consumption has not became prevalent. In this study, total phenolic and flavonoid content, antioxidant and antimicrobial activities of extracts obtained from two different extractors (soxhlete and ultrasonic bath) from P. divaricata subsp. divaricata fruits collected from two different locations (Ahırdağı and Nurhak) in Kahramanmaraş were investigated. In addition, fatty acids were analyzed by GC-MS analysis and 25 different fatty acids were determined. The main fatty acid components of P. divaricata subsp. divaricata fruit extracts collected from the Ahırdağı location include cis-11,14,17- eicosatrienoic acid (31.20%) and oleic acid (25.41%); in plants from Nurhak location, oleic acid (49.77%) and palmitic acid (23.05%). The ultrasonic bath was found to be more effective in detecting the bioactive contents of the extracts than the soxhlete. Total phenolic content of plant extracts (USB) in Ahırdağı and Nurhak locations were 62.50 and 37.40 mg g-1, total flavonoid amount was 2.96 and 1.81 mg g-1, FRAP value was 31.05 and 20.82 µg g-1 and DPPH were 1.47 and 1.65 mg g-1. Antimicrobial activity experiment carried with a total of 10 microorganisms (eight bacteria and two yeasts) showed that P. divaricata subsp. divaricata fruit extracts inhibited all of the microorganisms growth tested. However, inhibition effect on bacteria was higher than fungi.

References

  • Anonymous. 1993. Performance Standards for Antimicrobial Disc Suspectibility Tests. Approved Standard. NCCLS Publication M2-A5, Villanova, PA, USA, 1993.
  • Ballistreri, G., A. Continella, A. Gentile, M. Amenta, S. Fabroni, and P. Rapisarda. 2013. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chem. 140 (4): 630-638.
  • Benzie, I. F., and J. J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 239 (1): 70-76.
  • Blackhall, M. L., R. Berry, N. W. Davies, and J. T. Walls. 2018. Optimized extraction of anthocyanins from Reid Fruits’ Prunus avium ‘Lapins’ cherries. Food Chem. 256: 280-285.
  • Brand-Williams, W., M. E. Cuvelier, and C. L. W. T. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 28 (1): 25-30.
  • Cantin, C. M., M. A. Moreno, and Y. Gogorcena. 2009. Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J. Agric. Food Chem. 57 (11): 4586-4592.
  • Chang, C. C., M. H. Yang, H. M. Wen, and J. C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10 (3): 178-182.
  • Collins, C. H., P. M. Lyne, and J. M. Grange. 1989. Collins and Lyne’s Microbiological Methods. Sixth Edition, Butterworths Co. Ltd. London.
  • Davis, P. H. (Ed.) 1965-1985. Flora of Turkey and the East Aegean Islands. Vol. 1-9. Edinburgh: Edinburgh University Press.
  • Dönmez, A. A., and Ş. Yıldırımlı. 2000. Taxonomy of the genus Prunus L. (Rosaceae) in Turkey. Turkish Journal of Botany 24 (3): 187-202.
  • Ekor, M. 2014. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in pharmacology 4: 177. https://doi.org/10.3389/fphar.2013.00177.
  • Faydaoğlu, E. ve M. S. Sürücüoğlu. 2011. Geçmişten günümüze tıbbi ve aromatik bitkilerin kullanılması ve ekonomik önemi. Kastamonu Üniversitesi Orman Fakültesi Dergisi 11 (1): 52-67.
  • Ferioli, F., E. Giambanelli, L. F. D'Antuono, H. S. Costa, T. G. Albuquerque, A. S. Silva, and B. Koçaoglu. 2013. Comparison of leafy kale populations from Italy, Portugal, and Turkey for their bioactive compound content: phenolics, glucosinolates, carotenoids, and chlorophylls. J. Sci. Food Agric. 93 (14): 3478-3489 . Hagen, S. F., G. I. A. Borge, K. A. Solhaug, and G. B. Bengtsson.2009. Effect of cold storage and harvest date on bioactive compounds in curly kale (Brassica oleracea L. var. acephala). Postharvest Biol Technol. 51 (1): 36-42.
  • Heleno, S. A., P. Diz, M. A. Prieto, L. Barros, A. Rodrigues, M. F. Barreiro, and I. C. Ferreira. 2016. Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food chem. 197: 1054-1063.
  • Hintz, T., K. K. Matthews, and R. Di. 2015. The use of plant antimicrobial compounds for food preservation. BioMed research international 246264, 1-12.
  • Kırıcı, S., H. İbrikçi, M. A. Gür, A. Özel, D. Karaaslan, M. Kırpık, C. Akıncı, İ. Gül ve M. İnan. 2004. Güneydoğu Anadolu Bölgesi'nde kolza (Brassica napus L.) çeşitlerinde azot miktarı ve bitki yoğunluğunun tohum verimi ve yağ oranına etkisi. TÜBİTAK TOGTAG TARP Proje No. 1778: 1-54. Proje sonuç Raporu.
  • Kültür, Ş. 2007. Medicinal plants used in Kırklareli province (Turkey). J. Ethnopharmacol. 111 (2): 341-364.
  • Lim, Y. Y., T. T. Lim, and J. J. Tee. 2007. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 103 (3): 1003-1008.
  • Marinova, D., F. Ribarova, and M. Atanassova. 2005. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Chem. Technol. Metall. 40 (3): 255-260.
  • Matthaeus, B., and M. M. Ozcan. 2009. Fatty acids and tocopherol contents of some Prunus spp. kernel oils. J Food Lipids 16 (2): 187-199.
  • Mattioli, R., L. Mosca, A. Sánchez-Lamar, I. Tempera, and R. Hausmann. 2018. Natural bioactive compounds acting against oxidative stress in chronic, degenerative, and infectious diseases. Oxidative medicine and cellular longevity, 3894381, 1-2.
  • Miliauskas, G., P. R.Venskutonis, and T. A. Van Beek. 2004. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85 (2): 231-237.
  • Minaiyan, M., A. Ghannadi, A. Movahedian, P. Ramezanlou, and F. S. Osooli. 2014. Effect of the hydroalcoholic extract and juice of Prunus divaricata fruit on blood glucose and serum lipids of normal and streptozotocin-induced diabetic rats. Res Pharm Sci. 9 (6): 421.
  • Mocan, A., A. Diuzheva, S. Carradori, V. Andruch, C. Massafra, C. Moldovan, and G. D. Marconi. 2018. Development of novel techniques to extract phenolic compounds from Romanian cultivars of Prunus domestica L. and their biological properties. Food Chem Toxicol. 119: 189-198.
  • Mojab, F., M. Poursaeed, H. Mehrgan, and S. Pakdaman. 2008. Antibacterial activity of Thymus daenensis methanolic extract. Pak. J. Pharm. Sci. 21 (10): 210-213.
  • Motamed, S. M., and F. Naghibi. 2010. Antioxidant activity of some edible plants of the Turkmen Sahra region in northern Iran. Food Chem. 119 (4): 1637-1642.
  • Obanda, M., P. O. Owuor, and S. J. Taylor. 1997. Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. J. Sci. Food Agric. 74 (2): 209-215.
  • Ramalhosa, E., T. Delgado, L. Estevinho, and J. Alberto Pereira. 2011. Hazelnut (Corylus avellana L.) cultivars and antimicrobial activity. pp. 627-636. In: V. R. Preedy, R. R. Watson, V. B. Patel (Eds.). Nuts and Seeds in Health and Disease Prevention (1st ed.). London, Burlington, San Diego: Academic Press,
  • Reales, A., D. J. Sargent, K. R. Tobutt, and D. Rivera. 2010.Phylogenetics of Eurasian plums, Prunus L. section Prunus (Rosaceae), according to coding and non-coding chloroplast DNA sequences. Tree Genetics & Genomes 6: 37-45.
  • Rivera-Rangel, L. R., K. I. Aguilera-Campos, A. García-Triana, J. G. Ayala-Soto, D. Chavez-Flores, and L. Hernández-Ochoa. 2018. Comparison of oil content and fatty acids profile of Western Schley, Wichita, and native pecan nuts cultured in Chihuahua, Mexico. Journal of lipids 4781345, 1-6. https://doi. org/10.1155/2018/4781345.
  • Schieber, A., F. C. Stintzing, and R. Carle. 2001. By-products of plant food processing as a source of functional compounds-recent developments. Trends Food Sci Technol. 12 (11): 401-413.
  • Septembre-Malaterre, A., F. Remize, and P. Poucheret. 2018. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res Int. 104: 86-99.
  • Serteser, A., M. Kargıoğlu, V. Gök, Y. Bağci, M. M. Özcan, and D. Arslan. 2009. Antioxidant properties of some plants growing wild in Turkey. Grasas Aceites. 60 (2): 147-154.
  • Teixeira, M., T. Altmayer, F. Bruxel, C. R. Orlandi, N. F. de Moura, C. N. Afonso, and E. M. de Freitas. 2019. Rubus sellowii Cham. and Schlitdl. (Rosaceae) fruit nutritional potential characterization. Brazilian Journal of Biology 79 (3): 510-515.
  • Wöhrmann, T., D. Guicking, K. Khoshbakht, and K. Weising. 2011. Genetic variability in wild populations of Prunus divaricata Ledeb. in northern Iran evaluated by EST-SSR and genomic SSR marker analysis. Genet Resour Crop Evol. 58 (8): 1157-1167.

Kahramanmaraş’tan Toplanan Prunus divaricata subsp. divaricata Ledeb. Meyvelerinin Biyokimyasal Özellikleri ve Antimikrobiyal Aktivitelerinin Belirlenmesi

Year 2020, , 46 - 56, 08.05.2020
https://doi.org/10.18615/anadolu.727202

Abstract

Prunus divaricata subsp. divaricata Ledeb. (yonuz eriği), tıbbi amaçlı kullanımının yanı sıra, yöre halkı tarafından gıda olarak da tüketilen bir türdür. Ekonomik potansiyeli olmasına rağmen, yabani P. divaricata subsp. divaricata kültüre alınmamış ve meyve tüketimi yaygınlaşmamıştır. Bu çalışmada, Kahramanmaraş’ta Ahırdağı ve Nurhak lokasyonlarından toplanan P. divaricata subsp. divaricata meyve örneklerden iki farklı ekstraktörle (soksalet ve ultrasonik banyo) elde edilen ekstraktların, toplam fenolik ve flavonoid içerikleri ile antioksidan, antimikrobiyal aktiviteleri ve ayrıca GC-MS analizi ile analiz edildi ve 25 farklı yağ asidi belirlenmiştir. Ahırdağı lokasyonundan toplanan P. divaricata subsp. divaricata meyve ekstraktlarının başlıca yağ asidi bileşenlerini cis-11,14,17- eikosatrienoik asit (%31,20) ve oleik asit (%25,41); Nurhak lokasyonundaki bitkilerde ise oleik asit (%49,77) ve palmitik asit (%23,054) oluşturmaktadır. Ekstraktların biyoaktif içeriklerinin belirlenmesinde ultrasonik banyonun soksalete göre daha etkili olduğu görülmüştür. Ahırdağı ve Nurhak lokasyonundaki örneklerin USB metoduna göre sırasıyla toplam fenolik madde içeriği 62,50 ve 37,40 mg g-1, toplam flavonoid miktarı 2,96 ve 1,81 mg g-1, FRAP değeri 31,05. ve 20,82 µg g-1 ve DPPH değeri 1,47 ve 1,65 mg g-1 olarak bulunmuştur. Antimikrobiyal aktivite deneyi sonucunda, P. divaricata subsp. divaricata meyve ekstraktları çalışılan 10 mikroorganizmanın tamamının (8 bakteri ve 2 mantar) gelişimini durdurmuştur. Ancak bakteriler üzerindeki inhibisyon etkisi funguslardan daha yüksek bulunmuştur.

References

  • Anonymous. 1993. Performance Standards for Antimicrobial Disc Suspectibility Tests. Approved Standard. NCCLS Publication M2-A5, Villanova, PA, USA, 1993.
  • Ballistreri, G., A. Continella, A. Gentile, M. Amenta, S. Fabroni, and P. Rapisarda. 2013. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chem. 140 (4): 630-638.
  • Benzie, I. F., and J. J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 239 (1): 70-76.
  • Blackhall, M. L., R. Berry, N. W. Davies, and J. T. Walls. 2018. Optimized extraction of anthocyanins from Reid Fruits’ Prunus avium ‘Lapins’ cherries. Food Chem. 256: 280-285.
  • Brand-Williams, W., M. E. Cuvelier, and C. L. W. T. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 28 (1): 25-30.
  • Cantin, C. M., M. A. Moreno, and Y. Gogorcena. 2009. Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J. Agric. Food Chem. 57 (11): 4586-4592.
  • Chang, C. C., M. H. Yang, H. M. Wen, and J. C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10 (3): 178-182.
  • Collins, C. H., P. M. Lyne, and J. M. Grange. 1989. Collins and Lyne’s Microbiological Methods. Sixth Edition, Butterworths Co. Ltd. London.
  • Davis, P. H. (Ed.) 1965-1985. Flora of Turkey and the East Aegean Islands. Vol. 1-9. Edinburgh: Edinburgh University Press.
  • Dönmez, A. A., and Ş. Yıldırımlı. 2000. Taxonomy of the genus Prunus L. (Rosaceae) in Turkey. Turkish Journal of Botany 24 (3): 187-202.
  • Ekor, M. 2014. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in pharmacology 4: 177. https://doi.org/10.3389/fphar.2013.00177.
  • Faydaoğlu, E. ve M. S. Sürücüoğlu. 2011. Geçmişten günümüze tıbbi ve aromatik bitkilerin kullanılması ve ekonomik önemi. Kastamonu Üniversitesi Orman Fakültesi Dergisi 11 (1): 52-67.
  • Ferioli, F., E. Giambanelli, L. F. D'Antuono, H. S. Costa, T. G. Albuquerque, A. S. Silva, and B. Koçaoglu. 2013. Comparison of leafy kale populations from Italy, Portugal, and Turkey for their bioactive compound content: phenolics, glucosinolates, carotenoids, and chlorophylls. J. Sci. Food Agric. 93 (14): 3478-3489 . Hagen, S. F., G. I. A. Borge, K. A. Solhaug, and G. B. Bengtsson.2009. Effect of cold storage and harvest date on bioactive compounds in curly kale (Brassica oleracea L. var. acephala). Postharvest Biol Technol. 51 (1): 36-42.
  • Heleno, S. A., P. Diz, M. A. Prieto, L. Barros, A. Rodrigues, M. F. Barreiro, and I. C. Ferreira. 2016. Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food chem. 197: 1054-1063.
  • Hintz, T., K. K. Matthews, and R. Di. 2015. The use of plant antimicrobial compounds for food preservation. BioMed research international 246264, 1-12.
  • Kırıcı, S., H. İbrikçi, M. A. Gür, A. Özel, D. Karaaslan, M. Kırpık, C. Akıncı, İ. Gül ve M. İnan. 2004. Güneydoğu Anadolu Bölgesi'nde kolza (Brassica napus L.) çeşitlerinde azot miktarı ve bitki yoğunluğunun tohum verimi ve yağ oranına etkisi. TÜBİTAK TOGTAG TARP Proje No. 1778: 1-54. Proje sonuç Raporu.
  • Kültür, Ş. 2007. Medicinal plants used in Kırklareli province (Turkey). J. Ethnopharmacol. 111 (2): 341-364.
  • Lim, Y. Y., T. T. Lim, and J. J. Tee. 2007. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 103 (3): 1003-1008.
  • Marinova, D., F. Ribarova, and M. Atanassova. 2005. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Chem. Technol. Metall. 40 (3): 255-260.
  • Matthaeus, B., and M. M. Ozcan. 2009. Fatty acids and tocopherol contents of some Prunus spp. kernel oils. J Food Lipids 16 (2): 187-199.
  • Mattioli, R., L. Mosca, A. Sánchez-Lamar, I. Tempera, and R. Hausmann. 2018. Natural bioactive compounds acting against oxidative stress in chronic, degenerative, and infectious diseases. Oxidative medicine and cellular longevity, 3894381, 1-2.
  • Miliauskas, G., P. R.Venskutonis, and T. A. Van Beek. 2004. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85 (2): 231-237.
  • Minaiyan, M., A. Ghannadi, A. Movahedian, P. Ramezanlou, and F. S. Osooli. 2014. Effect of the hydroalcoholic extract and juice of Prunus divaricata fruit on blood glucose and serum lipids of normal and streptozotocin-induced diabetic rats. Res Pharm Sci. 9 (6): 421.
  • Mocan, A., A. Diuzheva, S. Carradori, V. Andruch, C. Massafra, C. Moldovan, and G. D. Marconi. 2018. Development of novel techniques to extract phenolic compounds from Romanian cultivars of Prunus domestica L. and their biological properties. Food Chem Toxicol. 119: 189-198.
  • Mojab, F., M. Poursaeed, H. Mehrgan, and S. Pakdaman. 2008. Antibacterial activity of Thymus daenensis methanolic extract. Pak. J. Pharm. Sci. 21 (10): 210-213.
  • Motamed, S. M., and F. Naghibi. 2010. Antioxidant activity of some edible plants of the Turkmen Sahra region in northern Iran. Food Chem. 119 (4): 1637-1642.
  • Obanda, M., P. O. Owuor, and S. J. Taylor. 1997. Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. J. Sci. Food Agric. 74 (2): 209-215.
  • Ramalhosa, E., T. Delgado, L. Estevinho, and J. Alberto Pereira. 2011. Hazelnut (Corylus avellana L.) cultivars and antimicrobial activity. pp. 627-636. In: V. R. Preedy, R. R. Watson, V. B. Patel (Eds.). Nuts and Seeds in Health and Disease Prevention (1st ed.). London, Burlington, San Diego: Academic Press,
  • Reales, A., D. J. Sargent, K. R. Tobutt, and D. Rivera. 2010.Phylogenetics of Eurasian plums, Prunus L. section Prunus (Rosaceae), according to coding and non-coding chloroplast DNA sequences. Tree Genetics & Genomes 6: 37-45.
  • Rivera-Rangel, L. R., K. I. Aguilera-Campos, A. García-Triana, J. G. Ayala-Soto, D. Chavez-Flores, and L. Hernández-Ochoa. 2018. Comparison of oil content and fatty acids profile of Western Schley, Wichita, and native pecan nuts cultured in Chihuahua, Mexico. Journal of lipids 4781345, 1-6. https://doi. org/10.1155/2018/4781345.
  • Schieber, A., F. C. Stintzing, and R. Carle. 2001. By-products of plant food processing as a source of functional compounds-recent developments. Trends Food Sci Technol. 12 (11): 401-413.
  • Septembre-Malaterre, A., F. Remize, and P. Poucheret. 2018. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res Int. 104: 86-99.
  • Serteser, A., M. Kargıoğlu, V. Gök, Y. Bağci, M. M. Özcan, and D. Arslan. 2009. Antioxidant properties of some plants growing wild in Turkey. Grasas Aceites. 60 (2): 147-154.
  • Teixeira, M., T. Altmayer, F. Bruxel, C. R. Orlandi, N. F. de Moura, C. N. Afonso, and E. M. de Freitas. 2019. Rubus sellowii Cham. and Schlitdl. (Rosaceae) fruit nutritional potential characterization. Brazilian Journal of Biology 79 (3): 510-515.
  • Wöhrmann, T., D. Guicking, K. Khoshbakht, and K. Weising. 2011. Genetic variability in wild populations of Prunus divaricata Ledeb. in northern Iran evaluated by EST-SSR and genomic SSR marker analysis. Genet Resour Crop Evol. 58 (8): 1157-1167.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Makaleler
Authors

Nazan Çömlekcioğlu This is me 0000-0001-7729-5271

Yusuf Ziya Kocabaş This is me 0000-0003-2831-8910

Ashabil Aygan This is me 0000-0003-4936-9872

Publication Date May 8, 2020
Submission Date August 26, 2019
Published in Issue Year 2020

Cite

APA Çömlekcioğlu, N., Kocabaş, Y. Z., & Aygan, A. (2020). Kahramanmaraş’tan Toplanan Prunus divaricata subsp. divaricata Ledeb. Meyvelerinin Biyokimyasal Özellikleri ve Antimikrobiyal Aktivitelerinin Belirlenmesi. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 30(1), 46-56. https://doi.org/10.18615/anadolu.727202
AMA Çömlekcioğlu N, Kocabaş YZ, Aygan A. Kahramanmaraş’tan Toplanan Prunus divaricata subsp. divaricata Ledeb. Meyvelerinin Biyokimyasal Özellikleri ve Antimikrobiyal Aktivitelerinin Belirlenmesi. ANADOLU. May 2020;30(1):46-56. doi:10.18615/anadolu.727202
Chicago Çömlekcioğlu, Nazan, Yusuf Ziya Kocabaş, and Ashabil Aygan. “Kahramanmaraş’tan Toplanan Prunus Divaricata Subsp. Divaricata Ledeb. Meyvelerinin Biyokimyasal Özellikleri Ve Antimikrobiyal Aktivitelerinin Belirlenmesi”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 30, no. 1 (May 2020): 46-56. https://doi.org/10.18615/anadolu.727202.
EndNote Çömlekcioğlu N, Kocabaş YZ, Aygan A (May 1, 2020) Kahramanmaraş’tan Toplanan Prunus divaricata subsp. divaricata Ledeb. Meyvelerinin Biyokimyasal Özellikleri ve Antimikrobiyal Aktivitelerinin Belirlenmesi. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 30 1 46–56.
IEEE N. Çömlekcioğlu, Y. Z. Kocabaş, and A. Aygan, “Kahramanmaraş’tan Toplanan Prunus divaricata subsp. divaricata Ledeb. Meyvelerinin Biyokimyasal Özellikleri ve Antimikrobiyal Aktivitelerinin Belirlenmesi”, ANADOLU, vol. 30, no. 1, pp. 46–56, 2020, doi: 10.18615/anadolu.727202.
ISNAD Çömlekcioğlu, Nazan et al. “Kahramanmaraş’tan Toplanan Prunus Divaricata Subsp. Divaricata Ledeb. Meyvelerinin Biyokimyasal Özellikleri Ve Antimikrobiyal Aktivitelerinin Belirlenmesi”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 30/1 (May 2020), 46-56. https://doi.org/10.18615/anadolu.727202.
JAMA Çömlekcioğlu N, Kocabaş YZ, Aygan A. Kahramanmaraş’tan Toplanan Prunus divaricata subsp. divaricata Ledeb. Meyvelerinin Biyokimyasal Özellikleri ve Antimikrobiyal Aktivitelerinin Belirlenmesi. ANADOLU. 2020;30:46–56.
MLA Çömlekcioğlu, Nazan et al. “Kahramanmaraş’tan Toplanan Prunus Divaricata Subsp. Divaricata Ledeb. Meyvelerinin Biyokimyasal Özellikleri Ve Antimikrobiyal Aktivitelerinin Belirlenmesi”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, vol. 30, no. 1, 2020, pp. 46-56, doi:10.18615/anadolu.727202.
Vancouver Çömlekcioğlu N, Kocabaş YZ, Aygan A. Kahramanmaraş’tan Toplanan Prunus divaricata subsp. divaricata Ledeb. Meyvelerinin Biyokimyasal Özellikleri ve Antimikrobiyal Aktivitelerinin Belirlenmesi. ANADOLU. 2020;30(1):46-5.
29899ANADOLU Journal by Aegean Agricultural Research Institute is licensed under CC BY-NC-ND 4.0  

30009     30010       30011     30012   30013      30014        30015  30016