Research Article
BibTex RIS Cite

Organik Tavuk Gübresinin Farklı Dozlarının Fesleğen (Ocimum basilicum L.)’in Element Analizine Etkileri

Year 2018, Volume: 28 Issue: 1, 83 - 88, 15.05.2018

Abstract

ÖZ: Lamiaceae familyasına ait fesleğen (Ocimum basilicum L.), dünyanın birçok
yerinde uçucu yağı için yetiştirilen önemli bir aromatik bitkidir. Bu
çalışma,  farklı organik tavuk  gübresi dozlarının (0,750, 1000, 1250 ve 1500
kg/da) fesleğen bitkisinin bazı elementleri üzerine etkilerini belirlemek
amacıyla, 2015-2016 yıllarında Bolu lokasyonunda (
40°41′ 28″ K, 31°32′ 38″D, 760 m rakım) yürütülmüştür. Aerosol numunelerindeki iyonlar, Dionex ICS 1100 Seri
iyon kromatografisi kullanılarak belirlenmiştir. Bitki yapraklarında en yüksek
element içeriklerine,  K+
(41.50 mg/g ) ve Cl (1.90 mg/g ) kontrol şartlarında,  Ca+2 (22.6 mg/g) 1000 kg/da organik
tavuk  gübre uygulamasında, PO4-3
(12.3 mg/g) ve Mg+2 (1.99 mg/g) 750 kg/da organik tavuk  gübre uygulamasında, SO4-2
(4.84 mg/g) 1500 kg/da organik tavuk 
gübre uygulamasında ulaşılırken, en düşük element içeriklerine Ca+2(6.22
mg/g) 1500 kg/da organik tavuk  gübre uygulamasında,
PO4-3 (8.14 mg/g) ve CI- (8.34 mg/g) 1250
kg/da organik tavuk gübre uygulamasında ulaşılmıştır. Bu araştırmanın
sonucunda, 750 ve 1000 kg/da organik tavuk gübre dozlarının fesleğenin bazı
elementleri üzerine olumlu etkileri olduğu saptanmıştır.


References

  • Agrahar-Murugkar, A., and G. Subbulakshmi. 2005. Nutritive values of wild edible fruits, berries, nuts, roots and species consumed by the Khasi tribes of India. Ecology of Food and Nutrition 44 (3): 207-223.
  • Anonim. 2016. Bolu devlet meteoroloji istasyonu kayıtları.
  • Anonymous. 2017. http://www.livanetarim.com/Kibele/tr/ Kibele_Gubre/Urunle_Ilgili_Bilgiler.aspx
  • Brody, T. 1994. Nutritional Biochemistry. Academic Press, San Diego, California.
  • Cakmak. I., and J. H. Hors. 1991. Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum 83: 463-468.
  • Daniel, V. N., I. E. Daniang, and N. D. Nimyel. 2011. Phytochemical analysis and mineral elements composition of Ocimum basilicum obtained in jos metropolis, plateau state, Nıgeria. Int. J. of Engineering Techn. IJET-IJENS. 11: 135-137.
  • Diao, X., P. Hazell, D. Resnick, and J. Thurlow. 2007. The role of agriculture in development: Implications for Sub-Saharan Africa. International Food Policy Research Institute Research Paper. Washington D.C. IFPRI. 153.
  • Flores, R. 2001. Health and nutrition: Emerging and reemerging ıssues in developing countries. In: P. Andersen, and R. P. Loveh (Eds). The Unfinished Agenda: Perspectives on Overcoming Hunger Poverty and Environmental Degradation. Washington D.C.: International Food Policy Research Institute. IFPRI.
  • Guil Guerrero, L. J., J. J. Gimenez Martinez, and M. E. Torija Isasa. 1998. Mineral nutrient composition of edible wild plants. J. Food Comp. Anal. 11: 322-28.
  • Hajjar I. M., C. E. Grim, V. George, and T. A. Kotchen. 2001. Impact of diet on blood pressure and age-related changes in blood pressure in the US population: analysis of NHANES. III. Archives of International Medicines 161: 589-593.
  • Hassan W., S. Rehman, H. Noreen, S. Gul, and S. N. Z. Kazmi. 2015. Metallic Content of One Hundred Medicinal Plants. Journal of Nutritional Disorders Therapy 5 (4): 1-9.
  • Lavilla, I., A. V. Filgueiras, and C. Bendicho. 1999. Comparison of digestion methods for determination of trace and minor metals in plant samples. J. Agric. Food Chemistry 47: 5072-5077.
  • Lee, S., K. Umano, T. Shibamoto, and K. G. Lee. 2005. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chemistry 91 (1): 131-137.
  • Ozcan, M. 2002. Mineral contents of some plants used as condiments in Turkey. Food Chemistry 84: 437-440.
  • Politeo, O., M. Jukic, and M. Milos. 2007. Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.) compared with its essential oil. Food Chemistry 101: 379-385.
  • Sajjadi, S. E. 2006. Analysis of the essential oils of two cultivated basil (Ocimum basilicum L.) from Iran. Daru 14 (3): 128-129.
  • Sartoratotto, A., A. L. M. Machado, C. Delarmelina, G. M. Figueira, M. C. T. Duarte, and V. L. G. Rehder. 2004. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Brazilian J. Microbiology 35 (4): 275-280.
  • Smith, L. C., and L. Haddad. 2001. Overcoming child malnutrition in developing countries: Past achievements and future choices. In: P. Andersen, and R. P. Loveh (Eds.). The Unfinished Agenda: Perspectives on Overcoming Hunger Poverty and Environmental Degradation. International Food Policy Research Institute. Washington D.C.
  • Soetan K. O., C. O. Olaiya, and O. E. Oyewole. 2010. The importance of mineral elements for humans, domestic animals and plants: A review. African Journal of Food Science 4 (5): 200-222.
  • Suppakul, P., J. Miltz, K. Sonneveld, and S.W. Bigger. 2003. Antimicrobial properties of basil and its possible application in food packing. Journal of Agriculture and Food Chemistry 51: 3197-3207.
  • Tarchoune I., E. Degl’Innocenti, R. Kaddour, L. Guidi, M. Lachaâl, F. Navari-Izzo, and Z. Ouerghi. 2012. Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L.Acta Physiologiae Plantarum 34 (2): 607-615.
  • Telci I., E. Bayram, G. Yilmaz, and B. Avci. 2006. Variability in essential oil composition of Turkish basils (Ocimum basilicum L.). Biochemical Systematics and Ecology 34: 489-497.
  • Tewari D., H. K. Pandey, A. N. Sah, H. S. Meena, A. Manchanda, and P. Patni. 2012. Pharmacognostical, Biochemical and Elemental investigation of Ocimum basilicum plants available in western Himalayas. International Journal of Research in Pharmaceutical and Biomedical Sciences 3 (2): 840-845.
  • Wannissorn, B., S. Jarikasem, T. Siriwangchai, and S. Thubthimthed. 2005. Antibacterial properties of essential oils from Thai medicinal plants. Fitoterapia 76: 233-236.
  • Witte F., N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend. 2008. Degradable biomaterials based on magnesium corrosion Current Opinion in Solid State and Materials Science 12 (5-6): 63-72.
  • Yamawaki, K., N. Morita, K. Murakami, and T. Murata. 1993. Contents of ascorbic acid andascorbate oxidase activity in fresh herbs. J. of Japanese Society for Food Science and Technology 40 (9): 636-640.

The Effects of Different Doses of Organic Chicken Fertilizer on the Element Analysis of Sweet Basil (Ocimum basilicum L.)

Year 2018, Volume: 28 Issue: 1, 83 - 88, 15.05.2018

Abstract

ABSTRACT: Sweet basil (Ocimum basilicum L.) genus belonging to the Lamiaceae family is an
important aromatic plant cultivated in many parts of the world for its
essential oil The present study was performed to determine the effects of
different organic chicken fertilizer doses (0,750, 1000, 1250 and 1500 kg/da)
on some elements of sweet basil.
The experiments were established in
Bolu location
(40°41′ 28″ N, 31°32′ 38″E, 760 m
elevation
), during the years 2015-2016.
The ions in aerosol samples were determined by using Dionex ICS 1100
Series ion chromatography. In leaves, the highest K+ and Cl-
contents were observed in the control (0 kg/da) application (41.50 mg/g and
11.90 mg/g), the highest PO4-3 and Mg+2
contents  were  detected in 750 kg/da organic
chicken fertilizer (12.3 mg/g and 1.99 mg/g), the highest Ca+2
content was detected in  1000 kg/da organic
chicken  fertilizer (22.6 mg/g), the
highest SO4-2 content was detected in  1500 kg/da organic chicken fertilizer (84
mg/g) and the lowest Ca content  was
observed in 1500 kg/da organic chicken fertilizer (6.22 mg/g)
and  the lowest PO4-3
and CI- contents  were
detected in 1250 kg/da organic chicken fertilizer (8.14 mg/g, 8.34
mg/g).  As a result of this research, 750
and 1000 kg/da application of
organic chicken fertilizer dose had significant effect on some elements of
sweet basil.


References

  • Agrahar-Murugkar, A., and G. Subbulakshmi. 2005. Nutritive values of wild edible fruits, berries, nuts, roots and species consumed by the Khasi tribes of India. Ecology of Food and Nutrition 44 (3): 207-223.
  • Anonim. 2016. Bolu devlet meteoroloji istasyonu kayıtları.
  • Anonymous. 2017. http://www.livanetarim.com/Kibele/tr/ Kibele_Gubre/Urunle_Ilgili_Bilgiler.aspx
  • Brody, T. 1994. Nutritional Biochemistry. Academic Press, San Diego, California.
  • Cakmak. I., and J. H. Hors. 1991. Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum 83: 463-468.
  • Daniel, V. N., I. E. Daniang, and N. D. Nimyel. 2011. Phytochemical analysis and mineral elements composition of Ocimum basilicum obtained in jos metropolis, plateau state, Nıgeria. Int. J. of Engineering Techn. IJET-IJENS. 11: 135-137.
  • Diao, X., P. Hazell, D. Resnick, and J. Thurlow. 2007. The role of agriculture in development: Implications for Sub-Saharan Africa. International Food Policy Research Institute Research Paper. Washington D.C. IFPRI. 153.
  • Flores, R. 2001. Health and nutrition: Emerging and reemerging ıssues in developing countries. In: P. Andersen, and R. P. Loveh (Eds). The Unfinished Agenda: Perspectives on Overcoming Hunger Poverty and Environmental Degradation. Washington D.C.: International Food Policy Research Institute. IFPRI.
  • Guil Guerrero, L. J., J. J. Gimenez Martinez, and M. E. Torija Isasa. 1998. Mineral nutrient composition of edible wild plants. J. Food Comp. Anal. 11: 322-28.
  • Hajjar I. M., C. E. Grim, V. George, and T. A. Kotchen. 2001. Impact of diet on blood pressure and age-related changes in blood pressure in the US population: analysis of NHANES. III. Archives of International Medicines 161: 589-593.
  • Hassan W., S. Rehman, H. Noreen, S. Gul, and S. N. Z. Kazmi. 2015. Metallic Content of One Hundred Medicinal Plants. Journal of Nutritional Disorders Therapy 5 (4): 1-9.
  • Lavilla, I., A. V. Filgueiras, and C. Bendicho. 1999. Comparison of digestion methods for determination of trace and minor metals in plant samples. J. Agric. Food Chemistry 47: 5072-5077.
  • Lee, S., K. Umano, T. Shibamoto, and K. G. Lee. 2005. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chemistry 91 (1): 131-137.
  • Ozcan, M. 2002. Mineral contents of some plants used as condiments in Turkey. Food Chemistry 84: 437-440.
  • Politeo, O., M. Jukic, and M. Milos. 2007. Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.) compared with its essential oil. Food Chemistry 101: 379-385.
  • Sajjadi, S. E. 2006. Analysis of the essential oils of two cultivated basil (Ocimum basilicum L.) from Iran. Daru 14 (3): 128-129.
  • Sartoratotto, A., A. L. M. Machado, C. Delarmelina, G. M. Figueira, M. C. T. Duarte, and V. L. G. Rehder. 2004. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Brazilian J. Microbiology 35 (4): 275-280.
  • Smith, L. C., and L. Haddad. 2001. Overcoming child malnutrition in developing countries: Past achievements and future choices. In: P. Andersen, and R. P. Loveh (Eds.). The Unfinished Agenda: Perspectives on Overcoming Hunger Poverty and Environmental Degradation. International Food Policy Research Institute. Washington D.C.
  • Soetan K. O., C. O. Olaiya, and O. E. Oyewole. 2010. The importance of mineral elements for humans, domestic animals and plants: A review. African Journal of Food Science 4 (5): 200-222.
  • Suppakul, P., J. Miltz, K. Sonneveld, and S.W. Bigger. 2003. Antimicrobial properties of basil and its possible application in food packing. Journal of Agriculture and Food Chemistry 51: 3197-3207.
  • Tarchoune I., E. Degl’Innocenti, R. Kaddour, L. Guidi, M. Lachaâl, F. Navari-Izzo, and Z. Ouerghi. 2012. Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L.Acta Physiologiae Plantarum 34 (2): 607-615.
  • Telci I., E. Bayram, G. Yilmaz, and B. Avci. 2006. Variability in essential oil composition of Turkish basils (Ocimum basilicum L.). Biochemical Systematics and Ecology 34: 489-497.
  • Tewari D., H. K. Pandey, A. N. Sah, H. S. Meena, A. Manchanda, and P. Patni. 2012. Pharmacognostical, Biochemical and Elemental investigation of Ocimum basilicum plants available in western Himalayas. International Journal of Research in Pharmaceutical and Biomedical Sciences 3 (2): 840-845.
  • Wannissorn, B., S. Jarikasem, T. Siriwangchai, and S. Thubthimthed. 2005. Antibacterial properties of essential oils from Thai medicinal plants. Fitoterapia 76: 233-236.
  • Witte F., N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend. 2008. Degradable biomaterials based on magnesium corrosion Current Opinion in Solid State and Materials Science 12 (5-6): 63-72.
  • Yamawaki, K., N. Morita, K. Murakami, and T. Murata. 1993. Contents of ascorbic acid andascorbate oxidase activity in fresh herbs. J. of Japanese Society for Food Science and Technology 40 (9): 636-640.
There are 26 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Gulsum Yaldız

Mahmut Çamlıca This is me

Ferit Özen This is me

Publication Date May 15, 2018
Submission Date May 29, 2017
Published in Issue Year 2018 Volume: 28 Issue: 1

Cite

APA Yaldız, G., Çamlıca, M., & Özen, F. (2018). The Effects of Different Doses of Organic Chicken Fertilizer on the Element Analysis of Sweet Basil (Ocimum basilicum L.). ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 28(1), 83-88.
AMA Yaldız G, Çamlıca M, Özen F. The Effects of Different Doses of Organic Chicken Fertilizer on the Element Analysis of Sweet Basil (Ocimum basilicum L.). ANADOLU. May 2018;28(1):83-88.
Chicago Yaldız, Gulsum, Mahmut Çamlıca, and Ferit Özen. “The Effects of Different Doses of Organic Chicken Fertilizer on the Element Analysis of Sweet Basil (Ocimum Basilicum L.)”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 28, no. 1 (May 2018): 83-88.
EndNote Yaldız G, Çamlıca M, Özen F (May 1, 2018) The Effects of Different Doses of Organic Chicken Fertilizer on the Element Analysis of Sweet Basil (Ocimum basilicum L.). ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 28 1 83–88.
IEEE G. Yaldız, M. Çamlıca, and F. Özen, “The Effects of Different Doses of Organic Chicken Fertilizer on the Element Analysis of Sweet Basil (Ocimum basilicum L.)”, ANADOLU, vol. 28, no. 1, pp. 83–88, 2018.
ISNAD Yaldız, Gulsum et al. “The Effects of Different Doses of Organic Chicken Fertilizer on the Element Analysis of Sweet Basil (Ocimum Basilicum L.)”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 28/1 (May 2018), 83-88.
JAMA Yaldız G, Çamlıca M, Özen F. The Effects of Different Doses of Organic Chicken Fertilizer on the Element Analysis of Sweet Basil (Ocimum basilicum L.). ANADOLU. 2018;28:83–88.
MLA Yaldız, Gulsum et al. “The Effects of Different Doses of Organic Chicken Fertilizer on the Element Analysis of Sweet Basil (Ocimum Basilicum L.)”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, vol. 28, no. 1, 2018, pp. 83-88.
Vancouver Yaldız G, Çamlıca M, Özen F. The Effects of Different Doses of Organic Chicken Fertilizer on the Element Analysis of Sweet Basil (Ocimum basilicum L.). ANADOLU. 2018;28(1):83-8.
29899ANADOLU Journal by Aegean Agricultural Research Institute is licensed under CC BY-NC-ND 4.0  

30009     30010       30011     30012   30013      30014        30015  30016