Research Article
BibTex RIS Cite

Growth Parameters of Cotton in Relay Strip Intercropping: Before and After Wheat Harvest

Year 2024, Volume: 34 Issue: 2, 146 - 161, 31.12.2024
https://doi.org/10.18615/anadolu.1539452

Abstract

To investigate cotton's adaptation to various microclimates provided by wheat height, a field experiment was conducted to observe the morphological and physiological traits of cotton seedlings before and after wheat harvest. The cotton was grown in relay strip intercropping with wheat of varying heights. The study observed canopy temperature depression (CTD), average leaf area (ALA), specific leaf area (SLA), SPAD values, net assimilation rates (NAR), total dry weight (TDW). During the shading period, intercropped cotton exhibited stress, indicated by CTD, compared to monocropped cotton (MC). This negative effect was more pronounced in short wheat-cotton intercropping (SC). Microclimates influenced leaf traits and biomass accumulation, with smaller ALA, higher SLA, higher SPAD values, and lower NAR observed in intercropped cotton, especially in SC, resulting in decreased TDW. Following wheat harvest, cotton plants, particularly in SC, exhibited significant NAR recovery by adjusting leaf structure. However, while this adjustment mitigated differences in TDW and yield compared to tall wheat-cotton intercropping (TC), disparities with MC remained. SC had a more pronounced negative impact on cotton before wheat harvest compared to TC. However, rapid recovery of cotton mitigated this negative effect in SC after wheat harvest.

References

  • Ahmad, F., S. Ud Din, A. Perveen and M. N. Afzal. 2013. Investigating critical growth stage of cotton subject to water deficit stress. Iranian Journal of Plant Physiology 4 (1): 873-880.
  • Ashfaq, W., S. Fuentes, G. Brodie, and D. Gupta. 2022. The role of silicon in regulating physiological and biochemical mechanisms of contrasting bread wheat cultivars under terminal drought and heat stress environments. Frontiers in Plant Science 13. https://doi.org/10.3389/ fpls.2022. 955490
  • Ayeneh, A., M. Ginkel, M.P. Reynolds and K. Ammar. 2002. Comparison of leaf, spike, peduncle, and canopy temperature depression in wheat under heat stress. Field Crops Research 79: 173-184.
  • Aziz, M., A. Mahmood, M.U. Asif and A. Ali. 2015. Wheat-based intercropping: a review. Journal of Animal and Plant Sciences 25: 896-904.
  • Bange, M. P. and S. P. Milroy. 2004. Growth and dry matter partitioning of diverse cotton genotypes. Field Crops Research 87: 73-87.
  • Blaise, D., A. Manikandan, P. Verma, P. Nalayini, M. Chakraborty and K. R. Kranthi. 2020. Allelopathic intercrops and its mulch as an integrated weed management strategy for rainfed bt-transgenic cotton hybrids. Crop Protection, 135: 105214. https://doi.org/10.1016/j.cropro. 2020.105214
  • Çakaloğulları, U. 2023. The impact of sowing directions on wheat and cotton yields in relay strip intercropping. Turkish Journal of Field Crops 28 (2): 221-228.
  • Cakalogullari, U. and O. Tatar. 2020b. Adaptation of cotton (Gossypium hirsutum L.) to limited water conditions: reversible change in canopy temperature. AgroLife Scientific Journal 9 (1): 64-72.
  • Cakalogullari, U., K. Bilgin, Eda U. Ç. A. R. and Ö. Tatar. 2020a. Accurate and practical method to detect phototropic leaf movement of cotton: Digital Imaging. Scientific Papers. Series A. Agronomy 63 (2): 67-72.
  • Cevheri, C. İ. and A. Yılmaz. 2019. The effects of organic and conventional farming systems on fibres quality properties of some cotton (Gossypium hirsutum L.) varieties under semi arid climatic conditions of Turkey and correlations between fibre quality properties. Ege Üniversitesi Ziraat Fakültesi Dergisi 56 (2): 147-152.
  • Chen, Y., J. T. Cothren, D. Chen, A. M. H. Ibrahim and L. Lombardini. 2015. Ethylene-inhibiting compound 1-mcp delays leaf senescence in cotton plants under abiotic stress conditions. Journal of Integrative Agriculture 14 (7): 1321-1331.
  • Dai, J. and H. Dong. 2014. Intensive cotton farming technologies in China: achievements, challenges and countermeasures. Field Crops Research 155: 99-110.
  • Díaz-López, E., J. M. E. Aguilar-Luna and J. M. Loeza-Corte. 2020. Net assimilation rate and agronomic efficiency of nitrogen in tartago (Ricinus communis L.) (Euphorbiaceae) in dry climate. Scientifica 2020: 1-7. https://doi.org/ 10.1155/2020/7064745
  • Du, X., B. Chen, Y. Meng, W. Zhao, Y. Zhang, T. Shen, Y. Wang and Z. Zhou. 2016. Effect of cropping system on cotton biomass accumulation and yield formation in double-cropped wheat-cotton. International Journal of Plant Production 10: 29-44.
  • Feng, L., G. Wang, Y. Han, Y. Li, Y. Zhu, Z. Zhou and W. Cao. 2017. Effects of planting pattern on growth and yield and economic benefits of cotton in a wheat-cotton double cropping system versus monoculture cotton. Field Crops Research 213: 100-108.
  • Figueiredo, F. R. A., J. E. d. S. Ribeiro, E. d. S. Coêlho, J. S. Nóbrega and M. B. d. Albuquerque. 2019. Growth and chlorophyll indices in seedlings of Calotropis procera (aiton) w. t. aiton submitted to different levels of shading. Revista Agro@mbiente on-Line 13: 164. https://doi.org/ 10.18227/1982-8470ragro.v13i0.5602
  • Francis, C. A. 1989. Biological efficiencies in multiple-cropping systems. Advances in Agronomy 42: 1-42.
  • Gangwar, B. and K. Prasad. 2005. Cropping system management for mitigation of second-generation problems in agriculture. Indian Journal of Agricultural Sciences 75: 65-78.
  • Gerakis, A. and B. D. Baer. 1999. A computer program for soil textural classification. Soil Science Society of America Journal 63 (4): 807-808.
  • Gong, W., P. Qi, J. Du, X. Sun, X. Wu, C. Song, W. Liu, Y. Wu, X. Yu, T. Yong, X. Wang, F. Yang, Y. Yang, W. Yang. 2014. Transcriptome analysis of shade-induced inhibition on leaf size in relay intercropped soybean. PLoS ONE 9 (6): e98465. https://doi.org/10.1371/journal. pone.0098465
  • Guendouz, A., B. Frih and A. Oulmi. 2021. Canopy cover temperature and drought tolerance indices in durum wheat (Triticum durum Desf.) genotypes under semi-arid condition in Algeria. International Journal of Bio-Resource and Stress Management 12 (6): 638-644.
  • Guo, X., X. Zuo, P. Yue, X. Li, Y. Hu, M. Chen and Q. Yu. 2022. Direct and indirect effects of precipitation change and nutrients addition on desert steppe productivity in Inner Mongolia, northern China. Plant and Soil 471 (1-2): 527-540.
  • Han, J., Y. Zhang, Z. Lei, W. Zhang and Y. Zhang. 2019. The higher area-based photosynthesis in Gossypium hirsutum L. is mostly attributed to higher leaf thickness. Photosynthetica 57 (2): 420-427.
  • Huang, C., Q. Liu, F. Gou, X. Li, C. Zhang, W. van der Werf and F. Zhang. 2017. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition. Field Crops Research 201: 41-51.
  • Khan, R. U., A. Rashid, A. Khan and S. G. Khan. 1999. Seed yield and monetary returns as influenced by pure crops and intercrops grown in association with wheat. Pakistan Journal of Biological Sciences 2: 891-893.
  • Li, L., J. Sun, F. Zhang, X. Li, Z. Rengel and S. Y. Sicun. 2001. Wheat/maize or wheat/soybean strip intercropping. Field Crops Research 71 (3): 173-181.
  • Liu, C., X. Guo, K. Wang, Y. Sun, W. Li and Q. Liu. 2018. Nitrogen deposition does not alleviate the adverse effects of shade on Camellia japonica (Naidong) seedlings. PLoS ONE 13 (8): e0201896. https://doi.org/10.1371/journal.pone.0201896
  • Liu, T. T., J. R. Shao, L. Shen, X. Y. Wang, T. Tuerti, L. H. Li and W. Zhang. 2021. Intercropping of maize (Zea mays) and cotton (Gossypium hirsutum L.) vs. monoculture: plant growth, root development, and yield. Journal of Agricultural Science 13 (9): 17.
  • Liu, Y., W. Dawson, D. Prati, E. Haeuser, Y. Feng and M. van Kleunen, 2016. Does greater specific leaf area plasticity help plants to maintain a high performance when shaded? Annals of Botany 118 (7): 1329-1336.
  • Liu, Z., M. Zhao, H. Zhang, T. Ren, C. Liu and N. He. 2023. Divergent response and adaptation of specific leaf area to environmental change at different spatio-temporal scales jointly improve plant survival. Global Change Biology 29: 1144-1159.
  • Machado, S. 2009. Does intercropping have a role in modern agriculture? Journal of Soil and Water Conservation, 64 (2): 55A-57A. https://doi.org/ 10.2489/jswc.64.2.55A
  • Martinez, D. E. and J. J. Guiamet. 2004. Distortion of the SPAD 502 chlorophyll meter readings by changes in irradiance and leaf water status. Agronomie 24: 41-46.
  • Morais, H., P. H. Caramori, A. M. d. A. Ribeiro, J. C. Gomes and M. S. Koguishi. 2006. Microclimatic characterization and productivity of coffee plants grown under shade of pigeon pea in southern Brazil. Pesquisa Agropecuária Brasileira 41 (5): 763-770.
  • Poorter, H., Ü. Niinemets, N. Ntagkas, A. Siebenkäs, M. Mäenpää, S. Matsubara and T. Pons. 2019. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist 223 (3): 1073-1105.
  • Porter, P. M. and A. Khalilian. 1995. Wheat response to row spacing in relay intercropping systems. Agronomy Journal 87 (5): 999-1003.
  • Reddy, V. R., D. L. Baker and M. C. Acock. 1989. Seasonal leaf area-leaf weight relationships in the cotton canopy. Agronomy Journal 81 (1): 1-4.
  • Reich, P. B. 2014. The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. Journal of Ecology 102 (2): 275-301.
  • Rosbakh, S., C. Römermann and P. Poschlod. 2015. Specific leaf area correlates with temperature: new evidence of trait variation at the population, species and community levels. Alpine Botany 125 (2): 79-86.
  • Siebert, J. D., A. M. Stewart and B. R. Leonard. 2006. Comparative growth and yield of cotton planted at various densities and configurations. Agronomy Journal 98: 562-568.
  • Thompson, A. E., M. M. Conley, M. T. Herritt and K. R. Thorp. 2022. Response of upland cotton (Gossypium hirsutum L.) leaf chlorophyll content to high heat and low-soil water in the Arizona low desert. Photosynthetica 60 (2): 280-292.
  • TURKSTAT. 2024. Crop Production Statistics. Turkish Statistical Institute. Ankara. Retrieved from https://www.tuik.gov.tr/ (accessed on May 20, 2024).
  • Valladares, F., and Ü. Niinemets. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics 39 (1): 237-257.
  • Wahla, I. H., R. Ahmed, Ehsanullah, A. Ahmed and A. Jabbar. 2009. Competitive functions of component crops in some barley-based intercropping. International Journal of Agricultural Biology 11: 69-72.
  • Wang, G., L. Feng, L. Liu, Y. Zhang, A. Li, Z. Wang, Y. Han, Y. Li, C. Li and H. Dong. 2021. Early relay intercropping of short-season cotton increases lint yield and earliness by improving the yield components and boll distribution under wheat-cotton double cropping. Agriculture 11 (12): 1294.
  • Wezel, A., M. Casagrande, F. Celette, J. Vian, A. Ferrer and J. Peigné. 2013. Agroecological practices for sustainable agriculture. a review. Agronomy for Sustainable Development 34 (1): 1-20.
  • Wiley, R. 1990. The Ecology of Intercropping. By J. H. Vandermeer. Cambridge: Cambridge University Press (1989), pp. 237. Experimental Agriculture 26 (3): 366. https://doi.org/10.1017/s00144797 00018597
  • Wu, Y., W. Gong and W. Yang. 2017. Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Scientific Reports 7: 9259. https://doi.org/10.1038/s41598-017-10026-5
  • Wu, Y., W. Gong, F. Yang, X. Wang, T. Yong and W. Yang. 2016. Responses to shade and subsequent recovery of soya bean in maize-soya bean relay strip intercropping. Plant Production Science 19 (2): 206-214.
  • Yildirim, E. and M. Ekinci. 2017. Intercropping Systems in Sustainable Agriculture. Ziraat Fakültesi Dergisi 12 (1): 100-110.
  • Zhang, L., J. H. J. Spiertz, S. Zhang, B. Li and W. van der Werf. 2008a. Nitrogen economy in relay intercropping systems of wheat and cotton. Plant and Soil 303 (1-2): 55-68.
  • Zhang, L., W. van der Werf, L. Bastiaans, S. Zhang, B. Li and J. H. J. Spiertz. 2008b. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research 107 (1): 29-42.
  • Zhang, L., W. van der Werf, S. Zhang, B. Li and J. H. J. Spiertz. 2007. Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Research 103: 178-188.
  • Zhang, L., W. van der Werf, S. Zhang, B. Li and J. Spiertz. 2008c. Temperature-mediated developmental delay may limit yield of cotton in relay intercrops with wheat. Field Crops Research 106 (3): 258-268.
  • Zhi, X., Y. Han, F. Xing, Y. Lei, G. Wang, L. Feng, B. Yang, Z. Wang, X. Li, S. Xiong, Z. Fan and Y. Li. 2019. How do cotton light interception and carbohydrate partitioning respond to cropping systems including monoculture, intercropping with wheat, and direct-seeding after wheat? PLoS ONE 14 (5): e0217243.

Sonradan Araya Ekim Sisteminde Pamuk Büyüme Dinamikleri: Buğday Hasadı Öncesi ve Sonrası

Year 2024, Volume: 34 Issue: 2, 146 - 161, 31.12.2024
https://doi.org/10.18615/anadolu.1539452

Abstract

Pamuk bitkisinin farklı buğday yüksekliklerinin sağladığı mikroklimalara adaptasyonunu araştırmak için, buğday hasadından önce ve sonra pamuk fidelerinin morfolojik ve fizyolojik özelliklerini gözlemlemek üzere bir tarla denemesi gerçekleştirildi. Pamuk, farklı yüksekliklerde buğday ile sonradan araya ekim sisteminde yetiştirilmiştir. Çalışmada, kanopi sıcaklık depresyonu (CTD), ortalama yaprak alanı (ALA), spesifik yaprak alanı (SLA), SPAD değerleri, net asimilasyon oranları (NAR) ve toplam kuru ağırlık (TDW) gibi morfolojik ve fizyolojik özellikler buğday hasadından önce ve sonra gözlemlenmiştir. Gölgeleme süreci boyunca, sonradan araya ekilen pamuk, tek ekim pamuğa (MC) kıyasla CTD de görüldüğü üzere stres belirtileri göstermiştir. Bu olumsuz etki, kısa buğday-pamuk ekimi (SC) sisteminde daha belirgin bulunmuştur. Mikroklimalar, yaprak özelliklerini ve biyokütle birikimini etkilemiş; SC'de özellikle daha küçük ALA, daha yüksek SLA, daha yüksek SPAD değerleri ve daha düşük NAR gözlemlenmiş ve bu durum TDW'de azalmaya neden olmuştur. Buğday hasadından sonra, özellikle SC'de pamuk bitkileri, yaprak yapılarını ayarlayarak NAR'da önemli bir iyileşme göstermiştir. Ancak, bu ayarlama, TDW ve verimde, uzun buğday-pamuk ekimi (TC) ile karşılaştırıldığında farkları azaltırken, MC ile karşılaştırıldığında farklılıkları tamamen ortadan kaldıramamıştır. SC, buğday hasadından önce pamuk üzerinde TC'ye kıyasla daha belirgin olumsuz bir etkiye sahip bulunmuştur. Ancak, pamuktaki hızlı iyileşme, bu olumsuz etkiyi buğday hasadından sonra SC'de hafifletmiştir.

References

  • Ahmad, F., S. Ud Din, A. Perveen and M. N. Afzal. 2013. Investigating critical growth stage of cotton subject to water deficit stress. Iranian Journal of Plant Physiology 4 (1): 873-880.
  • Ashfaq, W., S. Fuentes, G. Brodie, and D. Gupta. 2022. The role of silicon in regulating physiological and biochemical mechanisms of contrasting bread wheat cultivars under terminal drought and heat stress environments. Frontiers in Plant Science 13. https://doi.org/10.3389/ fpls.2022. 955490
  • Ayeneh, A., M. Ginkel, M.P. Reynolds and K. Ammar. 2002. Comparison of leaf, spike, peduncle, and canopy temperature depression in wheat under heat stress. Field Crops Research 79: 173-184.
  • Aziz, M., A. Mahmood, M.U. Asif and A. Ali. 2015. Wheat-based intercropping: a review. Journal of Animal and Plant Sciences 25: 896-904.
  • Bange, M. P. and S. P. Milroy. 2004. Growth and dry matter partitioning of diverse cotton genotypes. Field Crops Research 87: 73-87.
  • Blaise, D., A. Manikandan, P. Verma, P. Nalayini, M. Chakraborty and K. R. Kranthi. 2020. Allelopathic intercrops and its mulch as an integrated weed management strategy for rainfed bt-transgenic cotton hybrids. Crop Protection, 135: 105214. https://doi.org/10.1016/j.cropro. 2020.105214
  • Çakaloğulları, U. 2023. The impact of sowing directions on wheat and cotton yields in relay strip intercropping. Turkish Journal of Field Crops 28 (2): 221-228.
  • Cakalogullari, U. and O. Tatar. 2020b. Adaptation of cotton (Gossypium hirsutum L.) to limited water conditions: reversible change in canopy temperature. AgroLife Scientific Journal 9 (1): 64-72.
  • Cakalogullari, U., K. Bilgin, Eda U. Ç. A. R. and Ö. Tatar. 2020a. Accurate and practical method to detect phototropic leaf movement of cotton: Digital Imaging. Scientific Papers. Series A. Agronomy 63 (2): 67-72.
  • Cevheri, C. İ. and A. Yılmaz. 2019. The effects of organic and conventional farming systems on fibres quality properties of some cotton (Gossypium hirsutum L.) varieties under semi arid climatic conditions of Turkey and correlations between fibre quality properties. Ege Üniversitesi Ziraat Fakültesi Dergisi 56 (2): 147-152.
  • Chen, Y., J. T. Cothren, D. Chen, A. M. H. Ibrahim and L. Lombardini. 2015. Ethylene-inhibiting compound 1-mcp delays leaf senescence in cotton plants under abiotic stress conditions. Journal of Integrative Agriculture 14 (7): 1321-1331.
  • Dai, J. and H. Dong. 2014. Intensive cotton farming technologies in China: achievements, challenges and countermeasures. Field Crops Research 155: 99-110.
  • Díaz-López, E., J. M. E. Aguilar-Luna and J. M. Loeza-Corte. 2020. Net assimilation rate and agronomic efficiency of nitrogen in tartago (Ricinus communis L.) (Euphorbiaceae) in dry climate. Scientifica 2020: 1-7. https://doi.org/ 10.1155/2020/7064745
  • Du, X., B. Chen, Y. Meng, W. Zhao, Y. Zhang, T. Shen, Y. Wang and Z. Zhou. 2016. Effect of cropping system on cotton biomass accumulation and yield formation in double-cropped wheat-cotton. International Journal of Plant Production 10: 29-44.
  • Feng, L., G. Wang, Y. Han, Y. Li, Y. Zhu, Z. Zhou and W. Cao. 2017. Effects of planting pattern on growth and yield and economic benefits of cotton in a wheat-cotton double cropping system versus monoculture cotton. Field Crops Research 213: 100-108.
  • Figueiredo, F. R. A., J. E. d. S. Ribeiro, E. d. S. Coêlho, J. S. Nóbrega and M. B. d. Albuquerque. 2019. Growth and chlorophyll indices in seedlings of Calotropis procera (aiton) w. t. aiton submitted to different levels of shading. Revista Agro@mbiente on-Line 13: 164. https://doi.org/ 10.18227/1982-8470ragro.v13i0.5602
  • Francis, C. A. 1989. Biological efficiencies in multiple-cropping systems. Advances in Agronomy 42: 1-42.
  • Gangwar, B. and K. Prasad. 2005. Cropping system management for mitigation of second-generation problems in agriculture. Indian Journal of Agricultural Sciences 75: 65-78.
  • Gerakis, A. and B. D. Baer. 1999. A computer program for soil textural classification. Soil Science Society of America Journal 63 (4): 807-808.
  • Gong, W., P. Qi, J. Du, X. Sun, X. Wu, C. Song, W. Liu, Y. Wu, X. Yu, T. Yong, X. Wang, F. Yang, Y. Yang, W. Yang. 2014. Transcriptome analysis of shade-induced inhibition on leaf size in relay intercropped soybean. PLoS ONE 9 (6): e98465. https://doi.org/10.1371/journal. pone.0098465
  • Guendouz, A., B. Frih and A. Oulmi. 2021. Canopy cover temperature and drought tolerance indices in durum wheat (Triticum durum Desf.) genotypes under semi-arid condition in Algeria. International Journal of Bio-Resource and Stress Management 12 (6): 638-644.
  • Guo, X., X. Zuo, P. Yue, X. Li, Y. Hu, M. Chen and Q. Yu. 2022. Direct and indirect effects of precipitation change and nutrients addition on desert steppe productivity in Inner Mongolia, northern China. Plant and Soil 471 (1-2): 527-540.
  • Han, J., Y. Zhang, Z. Lei, W. Zhang and Y. Zhang. 2019. The higher area-based photosynthesis in Gossypium hirsutum L. is mostly attributed to higher leaf thickness. Photosynthetica 57 (2): 420-427.
  • Huang, C., Q. Liu, F. Gou, X. Li, C. Zhang, W. van der Werf and F. Zhang. 2017. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition. Field Crops Research 201: 41-51.
  • Khan, R. U., A. Rashid, A. Khan and S. G. Khan. 1999. Seed yield and monetary returns as influenced by pure crops and intercrops grown in association with wheat. Pakistan Journal of Biological Sciences 2: 891-893.
  • Li, L., J. Sun, F. Zhang, X. Li, Z. Rengel and S. Y. Sicun. 2001. Wheat/maize or wheat/soybean strip intercropping. Field Crops Research 71 (3): 173-181.
  • Liu, C., X. Guo, K. Wang, Y. Sun, W. Li and Q. Liu. 2018. Nitrogen deposition does not alleviate the adverse effects of shade on Camellia japonica (Naidong) seedlings. PLoS ONE 13 (8): e0201896. https://doi.org/10.1371/journal.pone.0201896
  • Liu, T. T., J. R. Shao, L. Shen, X. Y. Wang, T. Tuerti, L. H. Li and W. Zhang. 2021. Intercropping of maize (Zea mays) and cotton (Gossypium hirsutum L.) vs. monoculture: plant growth, root development, and yield. Journal of Agricultural Science 13 (9): 17.
  • Liu, Y., W. Dawson, D. Prati, E. Haeuser, Y. Feng and M. van Kleunen, 2016. Does greater specific leaf area plasticity help plants to maintain a high performance when shaded? Annals of Botany 118 (7): 1329-1336.
  • Liu, Z., M. Zhao, H. Zhang, T. Ren, C. Liu and N. He. 2023. Divergent response and adaptation of specific leaf area to environmental change at different spatio-temporal scales jointly improve plant survival. Global Change Biology 29: 1144-1159.
  • Machado, S. 2009. Does intercropping have a role in modern agriculture? Journal of Soil and Water Conservation, 64 (2): 55A-57A. https://doi.org/ 10.2489/jswc.64.2.55A
  • Martinez, D. E. and J. J. Guiamet. 2004. Distortion of the SPAD 502 chlorophyll meter readings by changes in irradiance and leaf water status. Agronomie 24: 41-46.
  • Morais, H., P. H. Caramori, A. M. d. A. Ribeiro, J. C. Gomes and M. S. Koguishi. 2006. Microclimatic characterization and productivity of coffee plants grown under shade of pigeon pea in southern Brazil. Pesquisa Agropecuária Brasileira 41 (5): 763-770.
  • Poorter, H., Ü. Niinemets, N. Ntagkas, A. Siebenkäs, M. Mäenpää, S. Matsubara and T. Pons. 2019. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist 223 (3): 1073-1105.
  • Porter, P. M. and A. Khalilian. 1995. Wheat response to row spacing in relay intercropping systems. Agronomy Journal 87 (5): 999-1003.
  • Reddy, V. R., D. L. Baker and M. C. Acock. 1989. Seasonal leaf area-leaf weight relationships in the cotton canopy. Agronomy Journal 81 (1): 1-4.
  • Reich, P. B. 2014. The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. Journal of Ecology 102 (2): 275-301.
  • Rosbakh, S., C. Römermann and P. Poschlod. 2015. Specific leaf area correlates with temperature: new evidence of trait variation at the population, species and community levels. Alpine Botany 125 (2): 79-86.
  • Siebert, J. D., A. M. Stewart and B. R. Leonard. 2006. Comparative growth and yield of cotton planted at various densities and configurations. Agronomy Journal 98: 562-568.
  • Thompson, A. E., M. M. Conley, M. T. Herritt and K. R. Thorp. 2022. Response of upland cotton (Gossypium hirsutum L.) leaf chlorophyll content to high heat and low-soil water in the Arizona low desert. Photosynthetica 60 (2): 280-292.
  • TURKSTAT. 2024. Crop Production Statistics. Turkish Statistical Institute. Ankara. Retrieved from https://www.tuik.gov.tr/ (accessed on May 20, 2024).
  • Valladares, F., and Ü. Niinemets. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics 39 (1): 237-257.
  • Wahla, I. H., R. Ahmed, Ehsanullah, A. Ahmed and A. Jabbar. 2009. Competitive functions of component crops in some barley-based intercropping. International Journal of Agricultural Biology 11: 69-72.
  • Wang, G., L. Feng, L. Liu, Y. Zhang, A. Li, Z. Wang, Y. Han, Y. Li, C. Li and H. Dong. 2021. Early relay intercropping of short-season cotton increases lint yield and earliness by improving the yield components and boll distribution under wheat-cotton double cropping. Agriculture 11 (12): 1294.
  • Wezel, A., M. Casagrande, F. Celette, J. Vian, A. Ferrer and J. Peigné. 2013. Agroecological practices for sustainable agriculture. a review. Agronomy for Sustainable Development 34 (1): 1-20.
  • Wiley, R. 1990. The Ecology of Intercropping. By J. H. Vandermeer. Cambridge: Cambridge University Press (1989), pp. 237. Experimental Agriculture 26 (3): 366. https://doi.org/10.1017/s00144797 00018597
  • Wu, Y., W. Gong and W. Yang. 2017. Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Scientific Reports 7: 9259. https://doi.org/10.1038/s41598-017-10026-5
  • Wu, Y., W. Gong, F. Yang, X. Wang, T. Yong and W. Yang. 2016. Responses to shade and subsequent recovery of soya bean in maize-soya bean relay strip intercropping. Plant Production Science 19 (2): 206-214.
  • Yildirim, E. and M. Ekinci. 2017. Intercropping Systems in Sustainable Agriculture. Ziraat Fakültesi Dergisi 12 (1): 100-110.
  • Zhang, L., J. H. J. Spiertz, S. Zhang, B. Li and W. van der Werf. 2008a. Nitrogen economy in relay intercropping systems of wheat and cotton. Plant and Soil 303 (1-2): 55-68.
  • Zhang, L., W. van der Werf, L. Bastiaans, S. Zhang, B. Li and J. H. J. Spiertz. 2008b. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research 107 (1): 29-42.
  • Zhang, L., W. van der Werf, S. Zhang, B. Li and J. H. J. Spiertz. 2007. Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Research 103: 178-188.
  • Zhang, L., W. van der Werf, S. Zhang, B. Li and J. Spiertz. 2008c. Temperature-mediated developmental delay may limit yield of cotton in relay intercrops with wheat. Field Crops Research 106 (3): 258-268.
  • Zhi, X., Y. Han, F. Xing, Y. Lei, G. Wang, L. Feng, B. Yang, Z. Wang, X. Li, S. Xiong, Z. Fan and Y. Li. 2019. How do cotton light interception and carbohydrate partitioning respond to cropping systems including monoculture, intercropping with wheat, and direct-seeding after wheat? PLoS ONE 14 (5): e0217243.
There are 54 citations in total.

Details

Primary Language English
Subjects Agronomy, Industrial Crops, Crop and Pasture Biochemistry and Physiology
Journal Section Makaleler
Authors

Uğur Çakaloğulları 0000-0003-4175-1815

Publication Date December 31, 2024
Submission Date August 27, 2024
Acceptance Date October 28, 2024
Published in Issue Year 2024 Volume: 34 Issue: 2

Cite

APA Çakaloğulları, U. (2024). Growth Parameters of Cotton in Relay Strip Intercropping: Before and After Wheat Harvest. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 34(2), 146-161. https://doi.org/10.18615/anadolu.1539452
AMA Çakaloğulları U. Growth Parameters of Cotton in Relay Strip Intercropping: Before and After Wheat Harvest. ANADOLU. December 2024;34(2):146-161. doi:10.18615/anadolu.1539452
Chicago Çakaloğulları, Uğur. “Growth Parameters of Cotton in Relay Strip Intercropping: Before and After Wheat Harvest”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 34, no. 2 (December 2024): 146-61. https://doi.org/10.18615/anadolu.1539452.
EndNote Çakaloğulları U (December 1, 2024) Growth Parameters of Cotton in Relay Strip Intercropping: Before and After Wheat Harvest. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 34 2 146–161.
IEEE U. Çakaloğulları, “Growth Parameters of Cotton in Relay Strip Intercropping: Before and After Wheat Harvest”, ANADOLU, vol. 34, no. 2, pp. 146–161, 2024, doi: 10.18615/anadolu.1539452.
ISNAD Çakaloğulları, Uğur. “Growth Parameters of Cotton in Relay Strip Intercropping: Before and After Wheat Harvest”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 34/2 (December 2024), 146-161. https://doi.org/10.18615/anadolu.1539452.
JAMA Çakaloğulları U. Growth Parameters of Cotton in Relay Strip Intercropping: Before and After Wheat Harvest. ANADOLU. 2024;34:146–161.
MLA Çakaloğulları, Uğur. “Growth Parameters of Cotton in Relay Strip Intercropping: Before and After Wheat Harvest”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, vol. 34, no. 2, 2024, pp. 146-61, doi:10.18615/anadolu.1539452.
Vancouver Çakaloğulları U. Growth Parameters of Cotton in Relay Strip Intercropping: Before and After Wheat Harvest. ANADOLU. 2024;34(2):146-61.
29899ANADOLU Journal by Aegean Agricultural Research Institute is licensed under CC BY-NC-ND 4.0  

30009     30010       30011     30012   30013      30014        30015  30016