Research Article
BibTex RIS Cite

Effect of Food and Oral Sımulatıng Lıquıds on the Surface Roughness of Restoratıve Materıals

Year 2021, , 98 - 107, 30.01.2021
https://doi.org/10.21673/anadoluklin.638631

Abstract

Aim: The aim of the present study was to assess the effect of the exposure to food-simulating liquids on the surface roughness (SR) of five restorative materials.

Materials and  Methods: Admira Fusion X-tra (AFX), Ceram X One (CRX), Gradia Indirect (GRA), Filtek P60 (P60) and Lava Ultimate (LAV) were used in the study. Thirty specimens of each material were prepared, stored for 24 h in distilled water. Then all specimens finished and polished with Sof-Lex discs. The initial SR of all samples was measured with a profilometer (Surftest SJ-201, Mitutoyo). All specimens of each composite were randomly allocated to 4 groups (n=6), according to the food-simulating liquid in which they were immersed for 30 days at room temperature and dark environment: distilled water, citric acid (0.02 N), ethanol (%75) and HCl (pH 1.2). Solutions were replaced weekly. Repeated SR measurements were performed at 30 day storage time. ΔRa values were obtained by subtracting the first measurement from the last measurement. Data were analysed by one-way ANOVA followed by Tukey’s HSD test (p=0.05).

Results: In ethanol-water immersion, the ΔRa value in the GRA was statistically different from the CRX and P60 (p<0.05). When the ΔRa values obtained in the stored of citric acid were examined, only AFX increased statistically compared to the other groups (p<0.05). There was no statistically significant difference in the ΔRa values between the materials that immersion in distilled water and HCL.


Conclusion:
The SR of the evaluated composite resins was affected differently from their immersion in food-stimulating media.

References

  • Ilie N, Hickel R. Resin composite restorative materials. Aust Dent J. 2011;56 Suppl 1:59-66.
  • Eccles JD. Dental erosion of nonindustrial origin. A clinical survey and classification. J Prosthet Dent. 1979;42(6):649-53.
  • Mohamed-Tahir MA, Yap AU. Effects of pH on the surface texture of glass ionomer based/containing restorative materials. Oper Dent. 2004;29(5):586-91.
  • Dundar A, Sengun A. Dental approach to erosive tooth wear in gastroesophageal reflux disease. Afr Health Sci. 2014;14(2):481-6.
  • Dundar A, Sengun A, Baslak C, Kus M. Effects of citric acid modified with fluoride, nano-hydroxyapatite and casein on eroded enamel. Arch Oral Biol. 2018;93:177-86.
  • Meurman JH, ten Cate JM. Pathogenesis and modifying factors of dental erosion. Eur J Oral Sci. 1996;104(2 ( Pt 2)):199-206.
  • Zero DT. Etiology of dental erosion–extrinsic factors. Eur J Oral Sci. 1996;104(2):162-77.
  • Milosevic A, Lennon M, Fear S. Risk factors associated with tooth wear in teenagers: a case control study. Community Dent Health. 1997;14(3):143-7.
  • Yap AU, Tan DT, Goh BK, Kuah HG, Goh M. Effect of food-simulating liquids on the flexural strength of composite and polyacid-modified composite restoratives. Oper Dent. 2000;25(3):202-8.
  • Food, Administration D. FDA guidelines for chemistry and technology requirements of indirect additive petitions. Washington, DC: FDA. 1976.
  • McKinney JE, Wu W. Chemical softening and wear of dental composites. J Dent Res. 1985;64(11):1326-31.
  • Wu W, McKinney JE. Influence of chemicals on wear of dental composites. J Dent Res. 1982;61(10):1180-3.
  • Akova T, Ozkomur A, Uysal H. Effect of food-simulating liquids on the mechanical properties of provisional restorative materials. Dent Mater. 2006;22(12):1130-4.
  • Vouvoudi EC, Sideridou ID. Dynamic mechanical properties of dental nanofilled light-cured resin composites: Effect of food-simulating liquids. J Mech Behav Biomed Mater. 2012;10:87-96.
  • Hunt D, McIntyre J. The development of an in vitro model of dental erosion. J Dent Res. 1992;71:985.
  • Soderholm KJ. Degradation of glass filler in experimental composites. J Dent Res. 1981;60(11):1867-75.
  • Oysaed H, Ruyter IE. Water sorption and filler characteristics of composites for use in posterior teeth. J Dent Res. 1986;65(11):1315-8.
  • Yap AU, Low JS, Ong LF. Effect of food-simulating liquids on surface characteristics of composite and polyacid-modified composite restoratives. Oper Dent. 2000;25(3):170-6.
  • Checketts MR, Turkyilmaz I, Asar NV. An investigation of the effect of scaling-induced surface roughness on bacterial adhesion in common fixed dental restorative materials. J Prosthet Dent. 2014;112(5):1265-70.
  • Manhart J, Kunzelmann KH, Chen HY, Hickel R. Mechanical properties of new composite restorative materials. J Biomed Mater Res. 2000;53(4):353-61.
  • Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997;13(4):258-69.
  • Barutcugil C, Bilgili D, Barutcigil K, Dundar A, Buyukkaplan US, Yilmaz B. Discoloration and translucency changes of CAD-CAM materials after exposure to beverages. J Prosthet Dent. 2019;122(3):325-31.
  • Gladys S, Van Meerbeek B, Braem M, Lambrechts P, Vanherle G. Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. J Dent Res. 1997;76(4):883-94.
  • Marghalani HY. Effect of filler particles on surface roughness of experimental composite series. J Appl Oral Sci. 2010;18(1):59-67.
  • Kooi TJ, Tan QZ, Yap AU, Guo W, Tay KJ, Soh MS. Effects of food-simulating liquids on surface properties of giomer restoratives. Oper Dent. 2012;37(6):665-71.
  • Yap AU, Lye KW, Sau CW. Surface characteristics of tooth-colored restoratives polished utilizing different polishing systems. Oper Dent. 1997;22(6):260-5.
  • Stoddard JW, Johnson GH. An evaluation of polishing agents for composite resins. J Prosthet Dent. 1991;65(4):491-5.
  • Marigo L, Rizzi M, La Torre G, Rumi G. 3-D surface profile analysis: different finishing methods for resin composites. Oper Dent. 2001;26(6):562-8.
  • Larsen IB, Munksgaard EC. Effect of human saliva on surface degradation of composite resins. Scand J Dent Res. 1991;99(3):254-61.
  • Yesilyurt C, Yoldas O, Altintas SH, Kusgoz A. Effects of food-simulating liquids on the mechanical properties of a silorane-based dental composite. Dent Mater J. 2009;28(3):362-7.
  • Voltarelli FR, Santos-Daroz CB, Alves MC, Cavalcanti AN, Marchi GM. Effect of chemical degradation followed by toothbrushing on the surface roughness of restorative composites. J Appl Oral Sci. 2010;18(6):585-90.
  • Yap AU, Wattanapayungkul P, Chung SM. Influence of the polymerization process on composite resistance to chemical degradation by food-simulating liquids. Oper Dent. 2003;28(6):723-7.
  • Tanthanuch, S., Kukiattrakoon, B., Eiam‐O‐Pas, K., Pokawattana, K., Pamanee, N., Thongkamkaew, W., Kochatung, A. Surface changes of various bulk‐fill resin‐based composites after exposure to different food‐simulating liquid and beverages. J Esthet Restor Dent. 2018;30(2):126-35.
  • Bansal K, Acharya SR, Saraswathi V. Effect of alcoholic and non-alcoholic beverages on color stability and surface roughness of resin composites: An in vitro study. J Conserv Dent. 2012;15(3):283-8.
  • Sideridou ID, Achilias DS, Karabela MM. Sorption kinetics of ethanol/water solution by dimethacrylate-based dental resins and resin composites. J Biomed Mater Res Part B Appl Biomater. 2007;81(1):207-18.
  • Polydorou O, Konig A, Hellwig E, Kummerer K. Long-term release of monomers from modern dental-composite materials. Eur J Oral Sci. 2009;117(1):68-75.
  • Benetti AR, Ribeiro de Jesus VC, Martinelli NL, Pascotto RC, Poli-Frederico RC. Colour stability, staining and roughness of silorane after prolonged chemical challenges. J Dent. 2013;41(12):1229-35.
  • Cilli R, Pereira JC, Prakki A. Properties of dental resins submitted to pH catalysed hydrolysis. J Dent. 2012;40(12):1144-50.

Besinleri Ve Ağız Ortamını Taklit Eden Sıvıların Restoratif Materyallerin Yüzey Pürüzlülüğüne Etkisi

Year 2021, , 98 - 107, 30.01.2021
https://doi.org/10.21673/anadoluklin.638631

Abstract

Amaç: Bu çalışmanın amacı, 5 farklı restoratif materyalin ağız ortamını taklit eden sıvılarda bekletil¬mesinin yüzey pürüzlülüğü (SR) üzerine etkilerini değerlendirmektir.

Gereç ve Yöntemler: Çalışmada kullanılan materyaller Admira Fusion X-tra (AFX), Ceram X One (CRX), Gradia İndirekt (GRA), Filtek P60 (P60) ve Lava Ultimate’tir (LAV). Her materyalden 30 adet örnek hazırlandı ve örnekler 24 saat distile suda bekletildi. Tüm örneklere Sof-Lex seti kul¬lanılarak bitim ve cila işlemi uygulandı. Ardından tüm örneklerin başlangıç yüzey pürüzlülüğü bir profilometre cihazı (Surftest SJ-201, Mitutoyo) ile ölçüldü. Her materyal grubuna ait örnekler farklı solüsyonlarda bekletilmek üzere 4 alt gruba ayrıldı (n=6): Distile su, sitrik asit (0,02 N), etanol (%75) ve hidroklorik asit (HCl) (pH 1,2). Örnekler karanlık ortamda oda sıcaklığında 30 gün boyunca so¬lüsyonlarda bekletildi. Solüsyonlar haftalık olarak yenilendi. Otuz gün sonunda pürüzlülük ölçümleri tekrar yapıldı. Son ölçümden ilk ölçüm çıkarılarak ΔRa değerleri elde edildi. Veriler tek yönlü ANOVA ve ardından Tukey HSD testi ile analiz edildi (p=0,05).



Bulgular
: Etanol-su çözeltisinde bekletilen materyaller arasında, GRA grubundaki ΔRa değerinin, CRX ve P60 grubuna kıyasla istatistiksel olarak anlamlı bir farklılık gösterdiği (p<0,05) bulundu. Sit¬rik asitte bekletilen örneklerin ΔRa değerleri incelendiğinde ise sadece AFX grubunda diğer grup¬lara göre istatistiksel olarak anlamlı artış gözlendi (p<0,05). Distile su ve hidroklorik asitte bekletilen bütün materyal grupları arasında ΔRa değerlerinde istatistiksel olarak anlamlı bir farklılık bulunmadı.



Sonuç
: Değerlendirilen kompozit rezinlerin yüzey pürüzlülüğü, ağız ortamını taklit eden sıvılarda bekletilmelerinden farklı şekilde etkilendi.

References

  • Ilie N, Hickel R. Resin composite restorative materials. Aust Dent J. 2011;56 Suppl 1:59-66.
  • Eccles JD. Dental erosion of nonindustrial origin. A clinical survey and classification. J Prosthet Dent. 1979;42(6):649-53.
  • Mohamed-Tahir MA, Yap AU. Effects of pH on the surface texture of glass ionomer based/containing restorative materials. Oper Dent. 2004;29(5):586-91.
  • Dundar A, Sengun A. Dental approach to erosive tooth wear in gastroesophageal reflux disease. Afr Health Sci. 2014;14(2):481-6.
  • Dundar A, Sengun A, Baslak C, Kus M. Effects of citric acid modified with fluoride, nano-hydroxyapatite and casein on eroded enamel. Arch Oral Biol. 2018;93:177-86.
  • Meurman JH, ten Cate JM. Pathogenesis and modifying factors of dental erosion. Eur J Oral Sci. 1996;104(2 ( Pt 2)):199-206.
  • Zero DT. Etiology of dental erosion–extrinsic factors. Eur J Oral Sci. 1996;104(2):162-77.
  • Milosevic A, Lennon M, Fear S. Risk factors associated with tooth wear in teenagers: a case control study. Community Dent Health. 1997;14(3):143-7.
  • Yap AU, Tan DT, Goh BK, Kuah HG, Goh M. Effect of food-simulating liquids on the flexural strength of composite and polyacid-modified composite restoratives. Oper Dent. 2000;25(3):202-8.
  • Food, Administration D. FDA guidelines for chemistry and technology requirements of indirect additive petitions. Washington, DC: FDA. 1976.
  • McKinney JE, Wu W. Chemical softening and wear of dental composites. J Dent Res. 1985;64(11):1326-31.
  • Wu W, McKinney JE. Influence of chemicals on wear of dental composites. J Dent Res. 1982;61(10):1180-3.
  • Akova T, Ozkomur A, Uysal H. Effect of food-simulating liquids on the mechanical properties of provisional restorative materials. Dent Mater. 2006;22(12):1130-4.
  • Vouvoudi EC, Sideridou ID. Dynamic mechanical properties of dental nanofilled light-cured resin composites: Effect of food-simulating liquids. J Mech Behav Biomed Mater. 2012;10:87-96.
  • Hunt D, McIntyre J. The development of an in vitro model of dental erosion. J Dent Res. 1992;71:985.
  • Soderholm KJ. Degradation of glass filler in experimental composites. J Dent Res. 1981;60(11):1867-75.
  • Oysaed H, Ruyter IE. Water sorption and filler characteristics of composites for use in posterior teeth. J Dent Res. 1986;65(11):1315-8.
  • Yap AU, Low JS, Ong LF. Effect of food-simulating liquids on surface characteristics of composite and polyacid-modified composite restoratives. Oper Dent. 2000;25(3):170-6.
  • Checketts MR, Turkyilmaz I, Asar NV. An investigation of the effect of scaling-induced surface roughness on bacterial adhesion in common fixed dental restorative materials. J Prosthet Dent. 2014;112(5):1265-70.
  • Manhart J, Kunzelmann KH, Chen HY, Hickel R. Mechanical properties of new composite restorative materials. J Biomed Mater Res. 2000;53(4):353-61.
  • Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997;13(4):258-69.
  • Barutcugil C, Bilgili D, Barutcigil K, Dundar A, Buyukkaplan US, Yilmaz B. Discoloration and translucency changes of CAD-CAM materials after exposure to beverages. J Prosthet Dent. 2019;122(3):325-31.
  • Gladys S, Van Meerbeek B, Braem M, Lambrechts P, Vanherle G. Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. J Dent Res. 1997;76(4):883-94.
  • Marghalani HY. Effect of filler particles on surface roughness of experimental composite series. J Appl Oral Sci. 2010;18(1):59-67.
  • Kooi TJ, Tan QZ, Yap AU, Guo W, Tay KJ, Soh MS. Effects of food-simulating liquids on surface properties of giomer restoratives. Oper Dent. 2012;37(6):665-71.
  • Yap AU, Lye KW, Sau CW. Surface characteristics of tooth-colored restoratives polished utilizing different polishing systems. Oper Dent. 1997;22(6):260-5.
  • Stoddard JW, Johnson GH. An evaluation of polishing agents for composite resins. J Prosthet Dent. 1991;65(4):491-5.
  • Marigo L, Rizzi M, La Torre G, Rumi G. 3-D surface profile analysis: different finishing methods for resin composites. Oper Dent. 2001;26(6):562-8.
  • Larsen IB, Munksgaard EC. Effect of human saliva on surface degradation of composite resins. Scand J Dent Res. 1991;99(3):254-61.
  • Yesilyurt C, Yoldas O, Altintas SH, Kusgoz A. Effects of food-simulating liquids on the mechanical properties of a silorane-based dental composite. Dent Mater J. 2009;28(3):362-7.
  • Voltarelli FR, Santos-Daroz CB, Alves MC, Cavalcanti AN, Marchi GM. Effect of chemical degradation followed by toothbrushing on the surface roughness of restorative composites. J Appl Oral Sci. 2010;18(6):585-90.
  • Yap AU, Wattanapayungkul P, Chung SM. Influence of the polymerization process on composite resistance to chemical degradation by food-simulating liquids. Oper Dent. 2003;28(6):723-7.
  • Tanthanuch, S., Kukiattrakoon, B., Eiam‐O‐Pas, K., Pokawattana, K., Pamanee, N., Thongkamkaew, W., Kochatung, A. Surface changes of various bulk‐fill resin‐based composites after exposure to different food‐simulating liquid and beverages. J Esthet Restor Dent. 2018;30(2):126-35.
  • Bansal K, Acharya SR, Saraswathi V. Effect of alcoholic and non-alcoholic beverages on color stability and surface roughness of resin composites: An in vitro study. J Conserv Dent. 2012;15(3):283-8.
  • Sideridou ID, Achilias DS, Karabela MM. Sorption kinetics of ethanol/water solution by dimethacrylate-based dental resins and resin composites. J Biomed Mater Res Part B Appl Biomater. 2007;81(1):207-18.
  • Polydorou O, Konig A, Hellwig E, Kummerer K. Long-term release of monomers from modern dental-composite materials. Eur J Oral Sci. 2009;117(1):68-75.
  • Benetti AR, Ribeiro de Jesus VC, Martinelli NL, Pascotto RC, Poli-Frederico RC. Colour stability, staining and roughness of silorane after prolonged chemical challenges. J Dent. 2013;41(12):1229-35.
  • Cilli R, Pereira JC, Prakki A. Properties of dental resins submitted to pH catalysed hydrolysis. J Dent. 2012;40(12):1144-50.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section ORIGINAL ARTICLE
Authors

Dilber Bilgili 0000-0003-0114-6936

Çağatay Barutçugil This is me 0000-0002-5321-2299

Ayşe Dündar 0000-0001-6373-6267

Publication Date January 30, 2021
Acceptance Date April 15, 2020
Published in Issue Year 2021

Cite

Vancouver Bilgili D, Barutçugil Ç, Dündar A. Besinleri Ve Ağız Ortamını Taklit Eden Sıvıların Restoratif Materyallerin Yüzey Pürüzlülüğüne Etkisi. Anadolu Klin. 2021;26(1):98-107.

13151 This Journal licensed under a CC BY-NC (Creative Commons Attribution-NonCommercial 4.0) International License.