Review
BibTex RIS Cite

The Role of Lung and Gut Microbiota in The Combat Against COVID-19

Year 2020, , 284 - 293, 20.03.2020
https://doi.org/10.21673/anadoluklin.736831

Abstract

COVID-19
initially seen in Wuhan China in December 2019 became an epidemic very rapidly
and was declared as a pandemic by the World Health Organization (WHO) on March
11, 2020. The disease presents as a serious clinical course in people with
other chronic diseases such as diabetes, heart diseases, especially immune
system problems. Functions and modulation of the immune system are extremely
important in defense against viruses. According to the results of multiple
types of research, one of the methods to boost the innate immune system is to
balance gut microbiota. Recent studies have shown that lung microbiota and gut
microbiota are interrelated and microbiota balance may be important in the
prevention of and defense against viral airway diseases. Scientists make great
effort worldwide to develop an effective treatment or vaccine against COVID-19,
but no cure or vaccine for COVID-19 has been found yet. For COVID-19 disease
innovative prophylactic approaches and treatment protocols based on functional
medicine perspective and directed towards pathophysiological mechanisms are
needed.
  It’s assumed that regulation of
gut and lung microbiota may be important in the prevention of the disease by
boosting the immune system and also may be included in treatment protocols as a
therapeutic target.
  COVID-19 pandemic
has shown once more the importance of preventive approaches like wellness,
maintenance of healthy living, immune system boosting, and modulation. Further
advanced researches are needed on subjects such as provision and use of
microbiota sources, standardization of administration of microbiota
regulating-supplementing products, and role of diet regulation in the treatment.
 



 

References

  • 1. Fauci A. S., Lane H.C., Redfield R.R. (2020). Covid-19 - Navigating the uncharted N engl j med 382;13. DOI: 10.1056/NEJMe2002387
  • 2. Murphy, R. (2020). Coronavirus, Homeopathy and Pneumonia, Centre for Homeopathic Education London, UK. https://www.cheonline.co.uk/Coronavirus
  • 3. Barnard, D.L., Kumaki Y., et all. (2011). Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol. 6(5): 615–631. doi:10.2217/fvl.11.33.
  • 4. Barnard, L., Kumaki.İ, (2011). Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy, Future Virol. 6(5): 615–631. doi: 10.2217/fvl.11.33
  • 5. Lai, C.C., Shih, T.P. and Ko, W.C. et al. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents 55. 105924 https://doi.org/10.1016/j.ijantimicag.2020.105924
  • 6. Wujtewicz, M.A., Sommer, A.D., Aszkielowitcz A., Zdanowski, Z., et al. (2020) COVID-19 What should anaethesiologists and intensivists know about it? Anaesthesiol Intensive Ther. 52 (1). DOI: https://doi.org/10.5114/ait.2020.93756
  • 7. Liu, W., Li, H. et al. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism, https://chemrxiv.org/articles/COVID-19 Disease ORF8 and Surface_ Glycoprotein Inhibit Heme Metabolism by Binding to Porphyrin/1193817350.
  • 8. TÜBA-Mikrobiyota ve insan sağlığı sempozyumu (10 Nisan 2017) Raporu: Türkiye Bilimler Akademisi Yayınları. TÜBA Raporları No: 24. ISBN: 978-9944-252-96-6
  • 9. Wu, C., Yang, Z., Song, C., Lİang, C., Li, H., Chen, W., Liu, W., Xie, Q.. (2018). Effects of dietary yeast nucleotides supplementation on intestinal barrier function, intestinal microbiota, and humoral immunity in specific pathogen-free chickens. Poultry Science 97:3837-3846. doi: 10.3382/ps/pey268.
  • 10. Purchiaroni, F., Tortora, A., Gabrielli M., Bertuccı, F., Gigante, G., Ianiro, G., Ojetti, V., Scarpellini, E., Gasbarrini, A. The role of intestinal microbiota and the immune system. European Review for Medical and Pharmacological Sciences; 2013; 17: 323-333 https://www.europeanreview.org/wp/wp-content/uploads/323-333.pdf
  • 11. Cianci, R., Pagliari, D., Piccirillo, C.A., Fritz, J.H. and Gambass, G. The Microbiota and Immune System Crosstalk in Health and Disease. Hindawi Mediators of Inflammation, Volume 2018, Article ID 2912539, https://doi.org/10.1155/2018/2912539
  • 12. Lazar, V., Ditu, L. M., Pircalabioru, G. G., Gheorghe, I., Curutiu, C., Holban, A. M., Picu, A., Petcu, L., & Chifiriuc, M. C. (2018). Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Frontiers in immunology, 9, 1830. https://doi.org/10.3389/fimmu.2018.01830
  • 13. Meazzi, S., Stranieria, A., Lauzia,S., Bonsembiantec, F., Ferroc, S., Paltrinieria,S., Giordanoa, A. (2019) Feline gut microbiota composition in association with feline coronavirus infection: A pilot study. Research in Veterinary Science. 125: 272–278. https://doi.org/10.1016/j.rvsc.2019.07.003
  • 14. Gleeson K, Eggli DF, Maxwell SL. (1997). Quantitative aspiration during sleep in normal subjects. Chest. 111:1266-72. doi: 10.1378/chest.111.5.1266
  • 15. Yatsunenko T, Rey FE, Manary MJ, et all. (2012). Human gut microbiome viewedacross age and geography. Nature.
  • 16. Dickson RP, Erb-Downward JR, Freeman CM, et al. (2017). Bacterial topography of the healthy human lower respiratory tract. MBiol. 14;8(1). doi: 10.1128/mBio.02287-16.
  • 17. Segal LN, Blaser MJ. A brave new world: the lung microbiota in an era of change. Ann Am Thorac Soc. (2014) 11 (Suppl. 1):S21–7. https://doi.org/10.1513/AnnalsATS.201306-189MG
  • 18. Sommariva, M., Le Noci, V., Bianchi, F. et al. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell. Mol. Life Sci. (2020). https://doi.org/10.1007/s00018-020-03452-8
  • 19. Shen, Z., Xiao, Y., Kang, L., Ma, W., Leisenh, S. et all. (2020). Genomic diversity of SARS-CoV-2 in Coronavirus Disease 2019 patients. Published by Oxford University Press for the Infectious Diseases Society of America. e-mail: journals.permissions@oup.com.
  • 20. Hn, M., Rajput, C., Ishikawa, T., Jarman, C.R., Lee, J., Hershenson, M.B. (2018). Small animal models of respiratory viral infection related to asthma, Viruses. 10, 682. https:doi:10.3390/v10120682
  • 21. Mukherjeea, S., Hanidziarb, D. (2018). More of the Gut in the Lung: How Two Microbiomes Meet in ARDS. Yale journal of biology and medicine 91 pp.143-149.
  • 22. Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJ,de Boer JD, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. (2016) 65:575–83. https://doi.org/10.3389/fmicb.2018.02147
  • 23. Nicholson,J; Holmes,E;Kinross,J: Burcelin,J; Gibson,G; Wei Jia, Pettersson,S. (2012) Host-Gut Microbiota,Metabolic Interactions; Science. 8;336(6086):1262-7. doi: 10.1126/science.1223813
  • 24. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. (2011) 3:858–76. doi: 10.3390/nu3100858.
  • 25. Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe. (2016) 20:202–14. doi 2: 10.1016/j.chom.2016.07.001.
  • 26. Li M, van Esch BCAM, Henricks PAJ, Folkerts G, Garssen J. The anti-inflammatory effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs. Front Pharmacol. (2018) 9:533. doi: 10.3389/fphar.2018.00533.
  • 27. Anand, S., Mande, S. (2018). Diet, Microbiota and Gut-Lung Connection; Front. Microbiol.19 September. Front. Microbiol. | https://doi.org/10.3389/fmicb.2018.02147 28. Mukherjeea,S., Hanidziarb, D. et al. (2018). More of the Gut in the Lung: How Two Microbiomes Meet in ARDS. Yale journal of biology and medicine 91 pp.143-149.
  • 29. Vinolo MA, Rodrigues HG, Nachbar RT, et all. (2011). Regulation of inflammation by short chain fatty acids. Nutrients. 3:858-76. doi: 10.3390/nu3100858.
  • 30. Guo, Y.R., Cao, Q.D., Hong, Z.S., Tan, Y.Y., Chen, S.D. et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status Military Medical Research (2020) 7:11 https://doi.org/10.1186/s40779-020-00240-0
  • 31. Perlot, T., Penninger. J.M. (2013). ACE2-From the renin angiotensin system to gut microbiota and Malnutrition. Microbes and Infection 15 (2013) 866e873. http://dx.doi.org/10.1016/j.micinf.2013.08.003
  • 32. Cole-Jeffrey, C. T., Liu, M., Katovich, M. J., Raizada, M. K., & Shenoy, V. (2015). ACE2 and Microbiota: Emerging Targets for Cardiopulmonary Disease Therapy. Journal of cardiovascular pharmacology, 66(6), 540–550. https://doi.org/10.1097/FJC.0000000000000307
  • 33. Lu, C. C., Ma, K. L., Ruan, X. Z., & Liu, B. C. (2018). Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy. International journal of medical sciences, 15(8), 816–822. https://doi.org/10.7150/ijms.25543
  • 34. Zhejiang Da Xue Xue Bao Yi Xue Ban. (2020 Feb). Management of corona virus disease-19 (COVID-19). 21;49(1):0 PMID:32096367
  • 35. Hindson, J., COVID-19: Faecal-oral transmission? Nature Reviews Gastroenterology & Hepatology (25 March 2020) https://doi.org/10.1038/s41575-020-0295-7

Covid-19 ile Mücadelede Akciğer ve Bağırsak Mikrobiyotalarının Rolü

Year 2020, , 284 - 293, 20.03.2020
https://doi.org/10.21673/anadoluklin.736831

Abstract

İlk defa
2019 Aralık ayında Çin’in Wuhan şehrinde görülen ve kısa sürede bir salgına neden
olan COVID-19 11 Mart 2020'de Dünya Sağlık Örgütü (WHO) tarafından küresel
salgın olarak ilan edilmiştir. Hastalık özellikle bağışıklık sistemi
problemleri başta olmak üzere diyabet, kalp hastalıkları gibi diğer kronik
hastalıkları olan kişilerde ciddi bir klinik seyir göstermektedir.  
Virüslere karşı savunmada immün sistemin
fonksiyonları ve modülasyonu son derece önemlidir. Birçok araştırmanın
sonuçlarına göre, doğal immün sistemi güçlendirmenin yollarından biri de
bağırsak mikrobiyotasını dengelemektir. Son zamanlarda yapılan çalışmalar
akciğer mikrobiyotası ile bağırsak mikrobiyotasının ilişkili olduğunu ve
mikrobiyota dengesinin viral solunum yolu hastalıklarının önlenmesi ve
savunmasında önemli olabileceğini göstermektedir. COVID-19’a karşı etkin bir
tedavi ve aşı geliştirmek için tüm Dünya’da bilim adamları yoğun olarak
çalışmaktadır, ancak henüz kesin tedavisi ya da aşısı bulunamamıştır.
Covid-19
hastalığı sürecinde fonksiyonel tıp bakış açısıyla fizyopatolojik mekanizmalara
yönelik geliştirilecek yeni profilaktik yaklaşımlar ve tedavi protokollerine
ihtiyaç vardır. Bağırsak ve akciğer
mikrobiyotaların
düzenlenmesinin immün sistemi güçlendirerek korunmada önemli olabileceği, yanı
sıra tedavi protokollerinde bir tedavi hedefi olarak yer alabileceğini ileri
sürülmektedir. COVID-19 salgını, sağlıklı yaşam, sağlığın korunması,
güçlendirme ve bağışıklık sistemi modülasyonu gibi profilaktik yaklaşımların
önemini bir kez daha göstermiştir. Mikrobiyota kaynaklarının nasıl elde edilip
kullanılacağı, mikrobiyota düzenleyici-destekleyici ürünlerin uygulamasının
standardizasyonu ve beslenmenin düzenlenmesinin tedavideki rolü gibi pek çok konuda
ileri araştırmalara ihtiyaç vardır.

References

  • 1. Fauci A. S., Lane H.C., Redfield R.R. (2020). Covid-19 - Navigating the uncharted N engl j med 382;13. DOI: 10.1056/NEJMe2002387
  • 2. Murphy, R. (2020). Coronavirus, Homeopathy and Pneumonia, Centre for Homeopathic Education London, UK. https://www.cheonline.co.uk/Coronavirus
  • 3. Barnard, D.L., Kumaki Y., et all. (2011). Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol. 6(5): 615–631. doi:10.2217/fvl.11.33.
  • 4. Barnard, L., Kumaki.İ, (2011). Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy, Future Virol. 6(5): 615–631. doi: 10.2217/fvl.11.33
  • 5. Lai, C.C., Shih, T.P. and Ko, W.C. et al. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents 55. 105924 https://doi.org/10.1016/j.ijantimicag.2020.105924
  • 6. Wujtewicz, M.A., Sommer, A.D., Aszkielowitcz A., Zdanowski, Z., et al. (2020) COVID-19 What should anaethesiologists and intensivists know about it? Anaesthesiol Intensive Ther. 52 (1). DOI: https://doi.org/10.5114/ait.2020.93756
  • 7. Liu, W., Li, H. et al. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism, https://chemrxiv.org/articles/COVID-19 Disease ORF8 and Surface_ Glycoprotein Inhibit Heme Metabolism by Binding to Porphyrin/1193817350.
  • 8. TÜBA-Mikrobiyota ve insan sağlığı sempozyumu (10 Nisan 2017) Raporu: Türkiye Bilimler Akademisi Yayınları. TÜBA Raporları No: 24. ISBN: 978-9944-252-96-6
  • 9. Wu, C., Yang, Z., Song, C., Lİang, C., Li, H., Chen, W., Liu, W., Xie, Q.. (2018). Effects of dietary yeast nucleotides supplementation on intestinal barrier function, intestinal microbiota, and humoral immunity in specific pathogen-free chickens. Poultry Science 97:3837-3846. doi: 10.3382/ps/pey268.
  • 10. Purchiaroni, F., Tortora, A., Gabrielli M., Bertuccı, F., Gigante, G., Ianiro, G., Ojetti, V., Scarpellini, E., Gasbarrini, A. The role of intestinal microbiota and the immune system. European Review for Medical and Pharmacological Sciences; 2013; 17: 323-333 https://www.europeanreview.org/wp/wp-content/uploads/323-333.pdf
  • 11. Cianci, R., Pagliari, D., Piccirillo, C.A., Fritz, J.H. and Gambass, G. The Microbiota and Immune System Crosstalk in Health and Disease. Hindawi Mediators of Inflammation, Volume 2018, Article ID 2912539, https://doi.org/10.1155/2018/2912539
  • 12. Lazar, V., Ditu, L. M., Pircalabioru, G. G., Gheorghe, I., Curutiu, C., Holban, A. M., Picu, A., Petcu, L., & Chifiriuc, M. C. (2018). Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Frontiers in immunology, 9, 1830. https://doi.org/10.3389/fimmu.2018.01830
  • 13. Meazzi, S., Stranieria, A., Lauzia,S., Bonsembiantec, F., Ferroc, S., Paltrinieria,S., Giordanoa, A. (2019) Feline gut microbiota composition in association with feline coronavirus infection: A pilot study. Research in Veterinary Science. 125: 272–278. https://doi.org/10.1016/j.rvsc.2019.07.003
  • 14. Gleeson K, Eggli DF, Maxwell SL. (1997). Quantitative aspiration during sleep in normal subjects. Chest. 111:1266-72. doi: 10.1378/chest.111.5.1266
  • 15. Yatsunenko T, Rey FE, Manary MJ, et all. (2012). Human gut microbiome viewedacross age and geography. Nature.
  • 16. Dickson RP, Erb-Downward JR, Freeman CM, et al. (2017). Bacterial topography of the healthy human lower respiratory tract. MBiol. 14;8(1). doi: 10.1128/mBio.02287-16.
  • 17. Segal LN, Blaser MJ. A brave new world: the lung microbiota in an era of change. Ann Am Thorac Soc. (2014) 11 (Suppl. 1):S21–7. https://doi.org/10.1513/AnnalsATS.201306-189MG
  • 18. Sommariva, M., Le Noci, V., Bianchi, F. et al. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell. Mol. Life Sci. (2020). https://doi.org/10.1007/s00018-020-03452-8
  • 19. Shen, Z., Xiao, Y., Kang, L., Ma, W., Leisenh, S. et all. (2020). Genomic diversity of SARS-CoV-2 in Coronavirus Disease 2019 patients. Published by Oxford University Press for the Infectious Diseases Society of America. e-mail: journals.permissions@oup.com.
  • 20. Hn, M., Rajput, C., Ishikawa, T., Jarman, C.R., Lee, J., Hershenson, M.B. (2018). Small animal models of respiratory viral infection related to asthma, Viruses. 10, 682. https:doi:10.3390/v10120682
  • 21. Mukherjeea, S., Hanidziarb, D. (2018). More of the Gut in the Lung: How Two Microbiomes Meet in ARDS. Yale journal of biology and medicine 91 pp.143-149.
  • 22. Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJ,de Boer JD, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. (2016) 65:575–83. https://doi.org/10.3389/fmicb.2018.02147
  • 23. Nicholson,J; Holmes,E;Kinross,J: Burcelin,J; Gibson,G; Wei Jia, Pettersson,S. (2012) Host-Gut Microbiota,Metabolic Interactions; Science. 8;336(6086):1262-7. doi: 10.1126/science.1223813
  • 24. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. (2011) 3:858–76. doi: 10.3390/nu3100858.
  • 25. Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe. (2016) 20:202–14. doi 2: 10.1016/j.chom.2016.07.001.
  • 26. Li M, van Esch BCAM, Henricks PAJ, Folkerts G, Garssen J. The anti-inflammatory effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs. Front Pharmacol. (2018) 9:533. doi: 10.3389/fphar.2018.00533.
  • 27. Anand, S., Mande, S. (2018). Diet, Microbiota and Gut-Lung Connection; Front. Microbiol.19 September. Front. Microbiol. | https://doi.org/10.3389/fmicb.2018.02147 28. Mukherjeea,S., Hanidziarb, D. et al. (2018). More of the Gut in the Lung: How Two Microbiomes Meet in ARDS. Yale journal of biology and medicine 91 pp.143-149.
  • 29. Vinolo MA, Rodrigues HG, Nachbar RT, et all. (2011). Regulation of inflammation by short chain fatty acids. Nutrients. 3:858-76. doi: 10.3390/nu3100858.
  • 30. Guo, Y.R., Cao, Q.D., Hong, Z.S., Tan, Y.Y., Chen, S.D. et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status Military Medical Research (2020) 7:11 https://doi.org/10.1186/s40779-020-00240-0
  • 31. Perlot, T., Penninger. J.M. (2013). ACE2-From the renin angiotensin system to gut microbiota and Malnutrition. Microbes and Infection 15 (2013) 866e873. http://dx.doi.org/10.1016/j.micinf.2013.08.003
  • 32. Cole-Jeffrey, C. T., Liu, M., Katovich, M. J., Raizada, M. K., & Shenoy, V. (2015). ACE2 and Microbiota: Emerging Targets for Cardiopulmonary Disease Therapy. Journal of cardiovascular pharmacology, 66(6), 540–550. https://doi.org/10.1097/FJC.0000000000000307
  • 33. Lu, C. C., Ma, K. L., Ruan, X. Z., & Liu, B. C. (2018). Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy. International journal of medical sciences, 15(8), 816–822. https://doi.org/10.7150/ijms.25543
  • 34. Zhejiang Da Xue Xue Bao Yi Xue Ban. (2020 Feb). Management of corona virus disease-19 (COVID-19). 21;49(1):0 PMID:32096367
  • 35. Hindson, J., COVID-19: Faecal-oral transmission? Nature Reviews Gastroenterology & Hepatology (25 March 2020) https://doi.org/10.1038/s41575-020-0295-7
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section REVİEW
Authors

Tijen Acarkan 0000-0002-3464-853X

Demet Erdoğan 0000-0002-6227-5769

Mehtap Kacar 0000-0002-1572-4787

Publication Date March 20, 2020
Acceptance Date May 30, 2020
Published in Issue Year 2020

Cite

Vancouver Acarkan T, Erdoğan D, Kacar M. Covid-19 ile Mücadelede Akciğer ve Bağırsak Mikrobiyotalarının Rolü. Anadolu Klin. 2020;25(Special Issue on COVID 19):284-93.

13151 This Journal licensed under a CC BY-NC (Creative Commons Attribution-NonCommercial 4.0) International License.