Research Article
BibTex RIS Cite

Yengeç ve Yumurta: Kanser Araştırmalarında Civciv Embriyosu Kullanımının Tarihçesi

Year 2020, , 264 - 273, 29.10.2020
https://doi.org/10.21673/anadoluklin.737042

Abstract

Amaç: Civciv embriyoları uzun zamandır embriyo gelişimine dair araştırmalarda bir kaynak olarak kullanılmaktadır. Bir tür hastalık olarak kanser de uzun zamandır bilinmekle birlikte, onkogenez ve embriyogenezin bir arada incelenmesi daha çok son bir asırda söz konusu olmuştur. Onkogenezin anlaşılmasında civciv embriyoları uygun bir model sağlamaktadır. Çalışmamızda geçmişte birbirinden bağımsız çalışılmış olan onkogenez ve embriyogenez hadiselerinin birlikte ele alınma sürecini incelemek amaçlanmıştır.


Gereç ve Yöntemler
: Civciv embriyolojisi ve kanser araştırmaları tarihiyle ilgili çalışmalara ve civciv modellerinin kanser araştırmalarında kullanılabilirliğiyle ilgili güncel derlemelere yönelik kapsamlı bir literatür taramasından elde edilen bulgular değerlendirilmiştir.



Bulgular:
Antikiteden itibaren gerek gelişim biyolojisi gerekse kanserin klinik ve etiyolojik özellikleri birer inceleme alanı olmuştur. Her iki alan da farklı dönemlerde geçerli farklı teorilere göre ve birbirinden bağımsız ele alınmıştır. Mikroskobun kullanılmaya başlaması, ardından tekniklerin ve teknolojinin giderek gelişmesi ve hücresel patolojinin yaygın bir biçimde benimsenmesi onkogenez ve embriyogenezin birlikte ele alınması için uygun zemin oluşturmuştur. Yirminci yüzyıl başlarında civciv embriyolarına kanser nakli deneyleri başlamış ve aynı yüzyılın sonlarında çeşitli sinyal yolakları keşfedilmiştir. Civciv embriyolarının kullanımı devam etmekle birlikte, bu süreçte farklı modeller de ortaya çıkmıştır.


Tartışma ve Sonuç:
Embriyogenez ve onkogenezin moleküler düzeyde benzer sinyal yolakları içermesi gelişim biyolojisi ve kanser biyolojisi alanlarını birbirine yaklaştırmaktadır. Civciv embriyo modelleri her iki alan için de kullanışlı bir çalışma modeli teşkil etmektedir. Kök hücre ve gen manipülasyonu boyutları da eklenerek, bu modellerin kullanılmaya devam etmesi beklenmektedir.

References

  • 1. Türkiye İstatistik Kurumu. Ölüm Nedeni İstatistikleri, 2014. Erişim: www.tuik.gov.tr/PreHaberBultenleri.do?id=18855 (erişildi: 16.01.2017).
  • 2. Salomon DS, Lewis MT. Embryogenesis and oncogenesis: Dr Jekyll and Mr Hyde. J Mammary Gland Biol Neoplasia. 2004;9(2):105–7.
  • 3. Bizzarri M, Cucina A, Biava PM, Proietti S, D’Anselmi F, Dinicola S, ve ark. Embryonic morphogenetic field induces phenotypic reversion in cancer cells. Curr Pharm Biotechnol. 2011;12:243–53.
  • 4. Hynes NE, Ingham PW, Lim WA, Marshall CJ, Massagué J, Pawson T. Signalling change: signal transduction through the decades. Nat Rev Mol Cell Biol. 2013;14:393–8.
  • 5. Sanz-Ezquerro JJ, Münsterberg AE, Stricker S. Editorial: signaling pathways in embryonic development. Front Cell Dev Biol. 2017;5:76.
  • 6. Friedl P, Hegerfeldt Y, Tusch M. Collective cell migration in morphogenesis and cancer. Int J Dev Biol. 2004;48:441–9.
  • 7. Kain KH, Miller JWI, Jones-Paris CR, Thomason RT, Lewis JD, Bader DM, ve ark. The chick embryo as an expanding experimental model for cancer and cardiovascular research. Dev Dyn. 2014;243(2):216–28.
  • 8. Tu SM. Origin of Cancers. New York: Springer; 2010.
  • 9. Ackerknecht EH. Historical notes on cancer. Med Hist. 1958;2(2):114–9.
  • 10. Weiss L. Early concepts of cancer. Cancer Metastasis Rev. 2000;19:205–17.
  • 11. Hajdu SI. A note from history: landmarks in history of cancer, part 1. Cancer. 2011;117:1097–102.
  • 12. Tibi S. Al-Razi and Islamic medicine in the 9th century. J R Soc Med. 2006;99:206–7.
  • 13. Eltorai I. Avicenna’s view on cancer from his canon. Am J Chinese Med. 1979;7(3):276–84.
  • 14. Riddle JM. Ancient and medieval chemotherapy for cancer. Isis. 1985;76(3):319–30.
  • 15. Hajdu SI. A note from history: landmarks in history of cancer, part 2. Cancer. 2011;117:2811–20.
  • 16. Hajdu SI. A note from history: the first printed case reports of cancer. Cancer. 2010;116:2493–8.
  • 17. Haggard HW, Smith GM. Johannes Müller and the modern conception of cancer. Yale J Biol Med. 1938;10(5):419–36.
  • 18. Hajdu SI. A note from history: landmarks in history of cancer, part 3. Cancer. 2012;118:1155–68.
  • 19. Haggard HW. The conception of cancer before and after Johannes Müller. Bull N Y Acad Med. 1938;14(4):183–97.
  • 20. Weiss L. Concepts of metastasis. Cancer Metastasis Rev. 2000;19:219–34.
  • 21. Hajdu SI. A note from history: landmarks in history of cancer, part 4. Cancer. 2012;118:4914–28.
  • 22. Stern CD, Bachvarova R. Early chick embryos in vitro. Int J Dev Biol. 1997;41(2):379–87.
  • 23. Cohen MR, Drabkin IE. A source book in Greek science. New York: McGraw-Hill; 1948.
  • 24. Wolpert L. Much more from the chicken’s egg than breakfast—a wonderful model system. Mech Dev. 2004;121:1015–7.
  • 25. Stern CD. The chick: a great model system becomes even greater. Dev Cell. 2005;8:9–17.
  • 26. Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol. 1951;88:49–92.
  • 27. Hamburger V. The stage series of the chick embryo. Dev Dyn. 1992;195:273–5.
  • 28. Endo Y. The history of the development of chick embryo tumor xenograft models. Enzymes. 2019;46:11–22.
  • 29. Tufan AC, Satiroglu-Tufan NL. The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents. Curr Cancer Drug Targets. 2005;5:249–66.
  • 30. Weiss RA, Vogt PK. 100 years of Rous sarcoma virus. J Exp Med. 2011;208(12):2351–5.
  • 31. Rous P, Murphy JB, Tytler WH. Transplantable tumors of the fowl: a neglected material for cancer research. JAMA. 1912;58(22):1682–3.
  • 32. Rous P, Murphy JB. On the causation by filterable agents of three distinct chicken tumors. J Exp Med. 1914;19(1):52–68.
  • 33. Rous P, Murphy JB. On immunity to transplantable chicken tumors. J Exp Med. 1914;20(4):419–32.
  • 34. Murphy JB. Transplantability of tissues to the embryo of foreign species: its bearing on questions of tissue specificity and tumor immunity. J Exp Med. 1913;17(4):482–93.
  • 35. Cimpean AM, Ribatti D, Raica M. The chick embryo chorioallantoic membrane as a model to study tumor metastasis. Angiogenesis. 2008;11:311–9.
  • 36. Ossowski L, Reich E. Experimental model for quantitative study of metastasis. Cancer Res. 1980;40(7):2300–9.
  • 37. Chambers AF, Shafir R, Ling V. A model system for studying metastasis using the embryonic chick. Cancer Res. 1982;42(10):4018–25.
  • 38. van Marion DMS, Domanska UM, Timmer-Bosscha H, Walenkamp AME. Studying cancer metastasis: existing models, challenges and future perspectives. Crit Rev Oncol Hematol. 2016;97:107–17.
  • 39. Ribatti D. The Chick Embryo Chorioallantoic Membrane in the Study of Angiogenesis and Metastasis. Berlin: Springer; 2010.
  • 40. Sid H, Schusser B. Applications of gene editing in chickens: a new era is on the horizon. Front Genet. 2018;9:456.
  • 41. Aiello NM, Stanger BZ. Echoes of the embryo: using the developmental biology toolkit to study cancer. Dis Model Mech. 2016;9:105–14.
  • 42. Davey MG, Towers M, Vargesson N, Tickle C. The chick limb: embryology, genetics and teratology. Int J Dev Biol. 2018;62:85–95.
  • 43. Suzuki T. How is digit identity determined during limb development? Dev Growth Differ. 2013;55:130–8.
  • 44. Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L. The role of the Hedgehog signaling pathway in cancer: a comprehensive review. Bosn J Basic Med Sci. 2018;18(1):8–20.
  • 45. Artavanis-Tsakonas S. The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila. Trends Genet. 1988;4(4):95–100.
  • 46. Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve growth factor: role in growth, differentiation and controlling cancer cell development. J Exp Clin Cancer Res. 2016;35:116. 47. Presciutti S, Boden S. BMP and beyond: a 25-year historical review of translational spine research at Emory University. Spine Surg Relat Res. 2018;2(1):1–10.
  • 48. Ribatti D. History of Research on Tumor Angiogenesis. Berlin: Springer; 2009.
  • 49. Sporn MB. TGF-beta: 20 years and counting. Microbes Infect. 1999;1(15):1251–3.
  • 50. Sporn MB. The early history of TGF-β, and a brief glimpse of its future. Cytokine Growth Factor Rev. 2006;17(1–2):3–7.
  • 51. Nawshad A, LaGamba D, Polad A, Hay ED. Transforming growth factor-β signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs. 2005;179(1–2):11–23.
  • 52. Busch C, Krochmann J, Drews U. The chick embryo as an experimental system for melanoma cell invasion. PLoS One. 2013;8(1):e53970.

The Crab and the Egg: A History of Cancer Research Using Chick Embryos

Year 2020, , 264 - 273, 29.10.2020
https://doi.org/10.21673/anadoluklin.737042

Abstract

Aim: Chick embryos have long been used as a source in research on embryonic development. Although cancer has also long been known as a nosological entity, the joint investigation of embryogenesis and oncogenesis has mostly occurred during the last one hundred years. Chick embryos provide a suitable model for understanding oncogenesis. In this study, we aimed to investigate the historical process that has led to joint studies of embryogenesis and oncogenesis, which were previously studied separately.



Materials and Methods:
We evaluated findings that resulted from an extensive literature review of studies on the history of chick embryology and cancer research and recent reviews on the usability of chick models in cancer research.



Results
: Both developmental biology and clinical and etiological characteristics of cancer have been an area of study since antiquity. The two fields were worked on separately and in line with different theories prevailing at different periods of time. The introduction of the microscope, the subsequent progressive advance in techniques and technology, and the widespread adoption of cellular pathology paved the way for joint studies of embryogenesis and oncogenesis. The early 20th century saw the first experiments of cancer transplantation in chick embryos, and various signaling pathways were discovered toward the end of the same century. While the use of chick embryos continues, other models were also introduced during this period.


Discussion and Conclusion
: Given the similarities in molecular signal pathways involved in embryogenesis and oncogenesis, developmental biology and cancer biology are closely linked to each other. Chick embryo models constitute a useful study model in both fields. It is expected that these models will continue to be used, being enhanced by stem cell and gene manipulation research.

References

  • 1. Türkiye İstatistik Kurumu. Ölüm Nedeni İstatistikleri, 2014. Erişim: www.tuik.gov.tr/PreHaberBultenleri.do?id=18855 (erişildi: 16.01.2017).
  • 2. Salomon DS, Lewis MT. Embryogenesis and oncogenesis: Dr Jekyll and Mr Hyde. J Mammary Gland Biol Neoplasia. 2004;9(2):105–7.
  • 3. Bizzarri M, Cucina A, Biava PM, Proietti S, D’Anselmi F, Dinicola S, ve ark. Embryonic morphogenetic field induces phenotypic reversion in cancer cells. Curr Pharm Biotechnol. 2011;12:243–53.
  • 4. Hynes NE, Ingham PW, Lim WA, Marshall CJ, Massagué J, Pawson T. Signalling change: signal transduction through the decades. Nat Rev Mol Cell Biol. 2013;14:393–8.
  • 5. Sanz-Ezquerro JJ, Münsterberg AE, Stricker S. Editorial: signaling pathways in embryonic development. Front Cell Dev Biol. 2017;5:76.
  • 6. Friedl P, Hegerfeldt Y, Tusch M. Collective cell migration in morphogenesis and cancer. Int J Dev Biol. 2004;48:441–9.
  • 7. Kain KH, Miller JWI, Jones-Paris CR, Thomason RT, Lewis JD, Bader DM, ve ark. The chick embryo as an expanding experimental model for cancer and cardiovascular research. Dev Dyn. 2014;243(2):216–28.
  • 8. Tu SM. Origin of Cancers. New York: Springer; 2010.
  • 9. Ackerknecht EH. Historical notes on cancer. Med Hist. 1958;2(2):114–9.
  • 10. Weiss L. Early concepts of cancer. Cancer Metastasis Rev. 2000;19:205–17.
  • 11. Hajdu SI. A note from history: landmarks in history of cancer, part 1. Cancer. 2011;117:1097–102.
  • 12. Tibi S. Al-Razi and Islamic medicine in the 9th century. J R Soc Med. 2006;99:206–7.
  • 13. Eltorai I. Avicenna’s view on cancer from his canon. Am J Chinese Med. 1979;7(3):276–84.
  • 14. Riddle JM. Ancient and medieval chemotherapy for cancer. Isis. 1985;76(3):319–30.
  • 15. Hajdu SI. A note from history: landmarks in history of cancer, part 2. Cancer. 2011;117:2811–20.
  • 16. Hajdu SI. A note from history: the first printed case reports of cancer. Cancer. 2010;116:2493–8.
  • 17. Haggard HW, Smith GM. Johannes Müller and the modern conception of cancer. Yale J Biol Med. 1938;10(5):419–36.
  • 18. Hajdu SI. A note from history: landmarks in history of cancer, part 3. Cancer. 2012;118:1155–68.
  • 19. Haggard HW. The conception of cancer before and after Johannes Müller. Bull N Y Acad Med. 1938;14(4):183–97.
  • 20. Weiss L. Concepts of metastasis. Cancer Metastasis Rev. 2000;19:219–34.
  • 21. Hajdu SI. A note from history: landmarks in history of cancer, part 4. Cancer. 2012;118:4914–28.
  • 22. Stern CD, Bachvarova R. Early chick embryos in vitro. Int J Dev Biol. 1997;41(2):379–87.
  • 23. Cohen MR, Drabkin IE. A source book in Greek science. New York: McGraw-Hill; 1948.
  • 24. Wolpert L. Much more from the chicken’s egg than breakfast—a wonderful model system. Mech Dev. 2004;121:1015–7.
  • 25. Stern CD. The chick: a great model system becomes even greater. Dev Cell. 2005;8:9–17.
  • 26. Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol. 1951;88:49–92.
  • 27. Hamburger V. The stage series of the chick embryo. Dev Dyn. 1992;195:273–5.
  • 28. Endo Y. The history of the development of chick embryo tumor xenograft models. Enzymes. 2019;46:11–22.
  • 29. Tufan AC, Satiroglu-Tufan NL. The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents. Curr Cancer Drug Targets. 2005;5:249–66.
  • 30. Weiss RA, Vogt PK. 100 years of Rous sarcoma virus. J Exp Med. 2011;208(12):2351–5.
  • 31. Rous P, Murphy JB, Tytler WH. Transplantable tumors of the fowl: a neglected material for cancer research. JAMA. 1912;58(22):1682–3.
  • 32. Rous P, Murphy JB. On the causation by filterable agents of three distinct chicken tumors. J Exp Med. 1914;19(1):52–68.
  • 33. Rous P, Murphy JB. On immunity to transplantable chicken tumors. J Exp Med. 1914;20(4):419–32.
  • 34. Murphy JB. Transplantability of tissues to the embryo of foreign species: its bearing on questions of tissue specificity and tumor immunity. J Exp Med. 1913;17(4):482–93.
  • 35. Cimpean AM, Ribatti D, Raica M. The chick embryo chorioallantoic membrane as a model to study tumor metastasis. Angiogenesis. 2008;11:311–9.
  • 36. Ossowski L, Reich E. Experimental model for quantitative study of metastasis. Cancer Res. 1980;40(7):2300–9.
  • 37. Chambers AF, Shafir R, Ling V. A model system for studying metastasis using the embryonic chick. Cancer Res. 1982;42(10):4018–25.
  • 38. van Marion DMS, Domanska UM, Timmer-Bosscha H, Walenkamp AME. Studying cancer metastasis: existing models, challenges and future perspectives. Crit Rev Oncol Hematol. 2016;97:107–17.
  • 39. Ribatti D. The Chick Embryo Chorioallantoic Membrane in the Study of Angiogenesis and Metastasis. Berlin: Springer; 2010.
  • 40. Sid H, Schusser B. Applications of gene editing in chickens: a new era is on the horizon. Front Genet. 2018;9:456.
  • 41. Aiello NM, Stanger BZ. Echoes of the embryo: using the developmental biology toolkit to study cancer. Dis Model Mech. 2016;9:105–14.
  • 42. Davey MG, Towers M, Vargesson N, Tickle C. The chick limb: embryology, genetics and teratology. Int J Dev Biol. 2018;62:85–95.
  • 43. Suzuki T. How is digit identity determined during limb development? Dev Growth Differ. 2013;55:130–8.
  • 44. Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L. The role of the Hedgehog signaling pathway in cancer: a comprehensive review. Bosn J Basic Med Sci. 2018;18(1):8–20.
  • 45. Artavanis-Tsakonas S. The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila. Trends Genet. 1988;4(4):95–100.
  • 46. Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve growth factor: role in growth, differentiation and controlling cancer cell development. J Exp Clin Cancer Res. 2016;35:116. 47. Presciutti S, Boden S. BMP and beyond: a 25-year historical review of translational spine research at Emory University. Spine Surg Relat Res. 2018;2(1):1–10.
  • 48. Ribatti D. History of Research on Tumor Angiogenesis. Berlin: Springer; 2009.
  • 49. Sporn MB. TGF-beta: 20 years and counting. Microbes Infect. 1999;1(15):1251–3.
  • 50. Sporn MB. The early history of TGF-β, and a brief glimpse of its future. Cytokine Growth Factor Rev. 2006;17(1–2):3–7.
  • 51. Nawshad A, LaGamba D, Polad A, Hay ED. Transforming growth factor-β signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs. 2005;179(1–2):11–23.
  • 52. Busch C, Krochmann J, Drews U. The chick embryo as an experimental system for melanoma cell invasion. PLoS One. 2013;8(1):e53970.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section ORIGINAL ARTICLE
Authors

Serap Uslu 0000-0002-6613-527X

Mahmut Alpertunga Kara 0000-0002-2031-3042

Publication Date October 29, 2020
Acceptance Date June 26, 2020
Published in Issue Year 2020

Cite

Vancouver Uslu S, Kara MA. Yengeç ve Yumurta: Kanser Araştırmalarında Civciv Embriyosu Kullanımının Tarihçesi. Anadolu Klin. 2020;25(3):264-73.

13151 This Journal licensed under a CC BY-NC (Creative Commons Attribution-NonCommercial 4.0) International License.