Research Article
BibTex RIS Cite

Evaluation of fracture strength of teeth with external cervical root resorption treated with different repair materials: An in vitro study

Year 2023, Volume: 28 Issue: 1, 95 - 100, 20.01.2023
https://doi.org/10.21673/anadoluklin.1020671

Abstract

Aim: The aim of this in vitro study is to evaluate the fracture strength of teeth with external cervical root resorption treated with different repair materials (MTA Angelus, RetroMTA, Biodentin).

Methods: In this study, 75 single-rooted maxillary central human teeth were used. 15 samples were separated as positive control group without any treatment. Simulated external cervical resorption defects were created in the remaining 60 specimens. In the cervical third of the buccal surface of these teeth, just below the cementoenamel junction, resorption cavities of 2 mm deep, 2 mm long and 4 mm wide were prepared using a diamond bur under water cooling. The teeth were separated into 4 groups to be treated with different repair materials (n=15). The negative control group was left empty without any material. In the other 3 groups, MTA Angelus, RetroMTA and Biodentin were prepared according to the manufacturer’s instructions and applied to the cavities. All specimens were kept in an incubator at 37°C and 95% relative humidity for 14 days and then embedded in acrylic blocks. The fracture resistance of the teeth was measured in Newtons using a universal tester. Data were analyzed with one-way ANOVA and post hoc tukey test at 5% significance level.

Results: No statistically significant difference was found between the Biodentin, RetroMTA and MTA Angelus groups. The fracture strength values of the repair materials used were significantly higher than the negative control group and significantly lower than the positive control group.

Conclusion: With this study, it was determined that the fracture strength of teeth with ECR decreased. However, teeth were found to be more resistant to fracture when these defects were repaired with MTA, Biodentin, and RetroMTA.

References

  • Patel S, Kanagasingam S, Ford TP. External cervical resorption: a review. J Endod. 2009;35(5): 616-25.
  • Patel S, Ford TP. Is the resorption external or internal? Dent Update. 2007;34(4):218-29.
  • Patel S, Saberi N. The ins and outs of root resorption. Brit Dent J. 2018;224(9): 691-9.
  • Heithersay GS. Clinical, radiologic, and histopathologic features of invasive cervical resorption. Quintessence Int. 1999;30(1):27-37.
  • Bergmans L, Van Cleynenbreugel J, Verbeken E, Wevers M, Van Meerbeek B, Lambrechts P. Cervical external root resorption in vital teeth: X‐ray microfocus‐tomographical and histopathological case study. J Clin Periodontol. 2002;29(6):580-5.
  • Gold SI, Hasselgren G. Peripheral inflammatory root resorption: a review of the literature with case reports. J Clin Periodontol. 1992;19(8):523-34.
  • Hammarström L, Lindskog S. Factors regulating and modifying dental root resorption. Proc Finn Dental Soc. 1992;88:115-23.
  • Heithersay GS. Invasive cervical resorption. Endod topics. 2004;7(1):73-92.
  • Tronstad L. Endodontic aspects of root resorption in clinical endodontics: a textbook. 2002, Stuttgart: Thieme.
  • Harrington GW, Natkin E. External resorption associated with bleaching of pulpless teeth. J Endod. 1979;5(11):344-8.
  • Trope M. Root resorption due to dental trauma. Endod topics. 2002;1(1):79-100.
  • Gunraj MN. Dental root resorption. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endod. 1999;88(6):647-53.
  • Liang H, Burkes E, Frederiksen N. Multiple idiopathic cervical root resorption: systematic review and report of four cases. Dentomaxillofac Radiol. 2003;32(3):150-5.
  • Patel S, Mavridou AM, Lambrechts P, Saberi N. External cervical resorption‐part 1: histopathology, distribution and presentation. Int Endod J. 2018;51(11):1205-23.
  • Kandalgaonkar SD, Gharat LA, Tupsakhare SD, Gabhane MH. Invasive cervical resorption: a review. J Int Oral Health. 2013;5(6):124-30.
  • Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review—part II: leakage and biocompatibility investigations. J Endod. 2010;36(2):190-202.
  • Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part I: chemical, physical, and antibacterial properties. J Endod. 2010;36(1): 16-27.
  • Sultana N, Singh M, Nawal RR, et al. Evaluation of biocompatibility and osteogenic potential of tricalcium silicate–based cements using human bone marrow–derived mesenchymal stem cells. J Endod. 2018;44(3): 446-51.
  • Koh ET, Torabinejad M, Pitt Ford TR, Brady K, McDonald F. Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Mater Res. 1997;37(3): 432-9.
  • Torabinejad M, Parirokh M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview–part II: other clinical applications and complications. Int Endod J. 2018;51(3):284-317.
  • Tawil PZ, Duggan DJ, Galicia JC. Mineral trioxide aggregate (MTA): its history, composition, and clinical applications. Comp Cont Educ Dent (Jamesburg, NJ: 1995). 2015;36(4):247-52; quiz 254, 264.
  • Duarte MAH, de Oliveira Demarchi ACC, Yamashita JC, Kuga MC, de Campos Fraga S. pH and calcium ion release of 2 root-end filling materials. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endod. 2003;95(3):345-7.
  • Üstün Y, Topçuoğlu HS, Akpek F, Aslan T. The effect of blood contamination on dislocation resistance of different endodontic reparative materials. J Oral Sci. 2015;57(3):185-90.
  • Souza LCD, Yadlapati M, Dorn SO, Silva R, Letra A. Analysis of radiopacity, pH and cytotoxicity of a new bioceramic material. J Appl Oral Sci. 2015;23(4):383-9.
  • Abusrewil SM, McLean W, Scott JA. The use of Bioceramics as root-end filling materials in periradicular surgery: A literature review. Saudi Dent J. 2018;30(4):273-82.
  • Malkondu Ö, Karapinar Kazandağ M, Kazazoğlu E. A review on biodentine, a contemporary dentine replacement and repair material. Biomed Res Int. 2014;2014:160951.
  • Laurent P, Camps J, De Méo M, Déjou J, About I. Induction of specific cell responses to a Ca3SiO5-based posterior restorative material. Dent mater. 2008;24(11):1486-94.
  • Patel S, Foschi F, Condon R, Pimentel T, Bhuva B. External cervical resorption: part 2–management. Int Endod J. 2018;51(11):1224-38.
  • Bortoluzzi EA, Souza EM, Reis JMSN, Esberard RM, Tanomaru‐Filho M. Fracture strength of bovine incisors after intra‐radicular treatment with MTA in an experimental immature tooth model. Int Endod J. 2007;40(9):684-91.
  • Chen Y, Huang Y, Deng X. A review of external cervical resorption. J Endod. 2021;47(6):883-94.
  • Irinakis E, Aleksejuniene J, Shen Y, Haapasalo M. External cervical resorption: a retrospective case-control study. J Endod. 2020;46(10):1420-7.
  • Patel J, Beddis HP. How to assess and manage external cervical resorption. Brit Dent J. 2019;227(8):695-701.
  • Matny LE, Ruparel NB, Levin MD, Noujeim M, Diogenes A. A volumetric assessment of external cervical resorption cases and its correlation to classification, treatment planning, and expected prognosis. J Endod. 2020;46(8):1052-8.
  • Türker SA, Uzunoğlu E, Sungur DD, Tek V. Fracture resistance of teeth with simulated perforating internal resorption cavities repaired with different calcium silicate–based cements and backfilling materials. J Endod. 2018;44(5):860-3.
  • Ulusoy Öİ, Paltun YN. Fracture resistance of roots with simulated internal resorption defects and obturated using different hybrid techniques. J Dent Sci. 2017;12(2):121-5.
  • EL‐Ma’aita AM, Qualtrough AJE, Watts DC. Resistance to vertical fracture of MTA‐filled roots. Dent Traumatol. 2014;30(1):36-42.
  • Darak P, Likhitkar M, Goenka S, Kumar A, Madale P, Kelode A. Comparative evaluation of fracture resistance of simulated immature teeth and its effect on single visit apexification versus complete obturation using MTA and biodentine. J Fam Med Prim Care. 2020;9(4):2011-5.
  • Bogen G, Kuttler S. Mineral trioxide aggregate obturation: a review and case series. J Endod. 2009;35(6):777-90.

Farklı tamir materyalleriyle tedavisi yapılan eksternal servikal kök rezorpsiyonuna sahip dişlerin kırılma dayanımlarının değerlendirilmesi: Bir in vitro çalışma

Year 2023, Volume: 28 Issue: 1, 95 - 100, 20.01.2023
https://doi.org/10.21673/anadoluklin.1020671

Abstract

Amaç: Bu in vitro çalışmanın amacı; farklı tamir materyalleri (MTA Angelus, RetroMTA, Biodentin) ile tedavi edilen eksternal servikal kök rezorpsiyonuna sahip dişlerin kırılma dayanımını değerlendirmektir.

Yöntemler: Bu çalışmada tek köklü 75 adet üst çene santral insan dişi kullanıldı. 15 örnek, hiçbir işlem yapılmadan pozitif kontrol grubu olarak ayrıldı. Kalan 60 örnekte simüle eksternal servikal rezorpsiyon defektleri oluşturuldu. Bu dişlerin bukkal yüzeyinin servikal üçlüsünde, mine sement sınırının hemen altında 2 mm derinliğinde, 2 mm uzunluk ve 4 mm genişliğinde rezorpsiyon kaviteleri su soğutması altında elmas frez kullanılarak hazırlandı. Dişler farklı tamir materyalleri ile tedavileri yapılmak üzere 4 gruba ayrıldı (n=15). Negatif kontrol grubu herhangi bir materyal ile doldurulmadan boş bırakıldı. Diğer 3 grup MTA Angelus, RetroMTA ve Biodentin ile üretici firmanın talimatları doğrultusunda hazırlanarak kaviteye yerleştirildi. Tüm numuneler 14 gün boyunca 37°C’de ve % 95 bağıl nemde bir inkübatörde tutulduktan sonra akril bloklara gömüldü. Dişlerin kırılma direnci, universal test cihazı kullanılarak Newton cinsinden ölçüldü. Veriler, tek yönlü anova ve post hoc tukey testi ile %5 anlamlılık düzeyinde analiz edildi (p≤0.05).

Bulgular: Biodentin, RetroMTA ve MTA Angelus grupları arasında istatistiksel olarak anlamlı bir fark bulunamamıştır (p≥0.05). Kullanılan tamir materyallerinin kırılma dayanımı değerleri negatif kontrol grubundan anlamlı derecede yüksek, pozitif kontrol grubundan anlamlı derecede düşük bulunmuştur.

Sonuç: Yapılan bu çalışmayla ECR’ye sahip dişlerin kırılma dayanımının azaldığı tespit edildi. Bununla birlikte; servikal defektler MTA, Biodentin ve RetroMTA ile tamir edildiğinde dişlerin kırılmaya daha dayanıklı hale gelmektedir. 

References

  • Patel S, Kanagasingam S, Ford TP. External cervical resorption: a review. J Endod. 2009;35(5): 616-25.
  • Patel S, Ford TP. Is the resorption external or internal? Dent Update. 2007;34(4):218-29.
  • Patel S, Saberi N. The ins and outs of root resorption. Brit Dent J. 2018;224(9): 691-9.
  • Heithersay GS. Clinical, radiologic, and histopathologic features of invasive cervical resorption. Quintessence Int. 1999;30(1):27-37.
  • Bergmans L, Van Cleynenbreugel J, Verbeken E, Wevers M, Van Meerbeek B, Lambrechts P. Cervical external root resorption in vital teeth: X‐ray microfocus‐tomographical and histopathological case study. J Clin Periodontol. 2002;29(6):580-5.
  • Gold SI, Hasselgren G. Peripheral inflammatory root resorption: a review of the literature with case reports. J Clin Periodontol. 1992;19(8):523-34.
  • Hammarström L, Lindskog S. Factors regulating and modifying dental root resorption. Proc Finn Dental Soc. 1992;88:115-23.
  • Heithersay GS. Invasive cervical resorption. Endod topics. 2004;7(1):73-92.
  • Tronstad L. Endodontic aspects of root resorption in clinical endodontics: a textbook. 2002, Stuttgart: Thieme.
  • Harrington GW, Natkin E. External resorption associated with bleaching of pulpless teeth. J Endod. 1979;5(11):344-8.
  • Trope M. Root resorption due to dental trauma. Endod topics. 2002;1(1):79-100.
  • Gunraj MN. Dental root resorption. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endod. 1999;88(6):647-53.
  • Liang H, Burkes E, Frederiksen N. Multiple idiopathic cervical root resorption: systematic review and report of four cases. Dentomaxillofac Radiol. 2003;32(3):150-5.
  • Patel S, Mavridou AM, Lambrechts P, Saberi N. External cervical resorption‐part 1: histopathology, distribution and presentation. Int Endod J. 2018;51(11):1205-23.
  • Kandalgaonkar SD, Gharat LA, Tupsakhare SD, Gabhane MH. Invasive cervical resorption: a review. J Int Oral Health. 2013;5(6):124-30.
  • Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review—part II: leakage and biocompatibility investigations. J Endod. 2010;36(2):190-202.
  • Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part I: chemical, physical, and antibacterial properties. J Endod. 2010;36(1): 16-27.
  • Sultana N, Singh M, Nawal RR, et al. Evaluation of biocompatibility and osteogenic potential of tricalcium silicate–based cements using human bone marrow–derived mesenchymal stem cells. J Endod. 2018;44(3): 446-51.
  • Koh ET, Torabinejad M, Pitt Ford TR, Brady K, McDonald F. Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Mater Res. 1997;37(3): 432-9.
  • Torabinejad M, Parirokh M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview–part II: other clinical applications and complications. Int Endod J. 2018;51(3):284-317.
  • Tawil PZ, Duggan DJ, Galicia JC. Mineral trioxide aggregate (MTA): its history, composition, and clinical applications. Comp Cont Educ Dent (Jamesburg, NJ: 1995). 2015;36(4):247-52; quiz 254, 264.
  • Duarte MAH, de Oliveira Demarchi ACC, Yamashita JC, Kuga MC, de Campos Fraga S. pH and calcium ion release of 2 root-end filling materials. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endod. 2003;95(3):345-7.
  • Üstün Y, Topçuoğlu HS, Akpek F, Aslan T. The effect of blood contamination on dislocation resistance of different endodontic reparative materials. J Oral Sci. 2015;57(3):185-90.
  • Souza LCD, Yadlapati M, Dorn SO, Silva R, Letra A. Analysis of radiopacity, pH and cytotoxicity of a new bioceramic material. J Appl Oral Sci. 2015;23(4):383-9.
  • Abusrewil SM, McLean W, Scott JA. The use of Bioceramics as root-end filling materials in periradicular surgery: A literature review. Saudi Dent J. 2018;30(4):273-82.
  • Malkondu Ö, Karapinar Kazandağ M, Kazazoğlu E. A review on biodentine, a contemporary dentine replacement and repair material. Biomed Res Int. 2014;2014:160951.
  • Laurent P, Camps J, De Méo M, Déjou J, About I. Induction of specific cell responses to a Ca3SiO5-based posterior restorative material. Dent mater. 2008;24(11):1486-94.
  • Patel S, Foschi F, Condon R, Pimentel T, Bhuva B. External cervical resorption: part 2–management. Int Endod J. 2018;51(11):1224-38.
  • Bortoluzzi EA, Souza EM, Reis JMSN, Esberard RM, Tanomaru‐Filho M. Fracture strength of bovine incisors after intra‐radicular treatment with MTA in an experimental immature tooth model. Int Endod J. 2007;40(9):684-91.
  • Chen Y, Huang Y, Deng X. A review of external cervical resorption. J Endod. 2021;47(6):883-94.
  • Irinakis E, Aleksejuniene J, Shen Y, Haapasalo M. External cervical resorption: a retrospective case-control study. J Endod. 2020;46(10):1420-7.
  • Patel J, Beddis HP. How to assess and manage external cervical resorption. Brit Dent J. 2019;227(8):695-701.
  • Matny LE, Ruparel NB, Levin MD, Noujeim M, Diogenes A. A volumetric assessment of external cervical resorption cases and its correlation to classification, treatment planning, and expected prognosis. J Endod. 2020;46(8):1052-8.
  • Türker SA, Uzunoğlu E, Sungur DD, Tek V. Fracture resistance of teeth with simulated perforating internal resorption cavities repaired with different calcium silicate–based cements and backfilling materials. J Endod. 2018;44(5):860-3.
  • Ulusoy Öİ, Paltun YN. Fracture resistance of roots with simulated internal resorption defects and obturated using different hybrid techniques. J Dent Sci. 2017;12(2):121-5.
  • EL‐Ma’aita AM, Qualtrough AJE, Watts DC. Resistance to vertical fracture of MTA‐filled roots. Dent Traumatol. 2014;30(1):36-42.
  • Darak P, Likhitkar M, Goenka S, Kumar A, Madale P, Kelode A. Comparative evaluation of fracture resistance of simulated immature teeth and its effect on single visit apexification versus complete obturation using MTA and biodentine. J Fam Med Prim Care. 2020;9(4):2011-5.
  • Bogen G, Kuttler S. Mineral trioxide aggregate obturation: a review and case series. J Endod. 2009;35(6):777-90.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section ORIGINAL ARTICLE
Authors

Melike Bayram 0000-0002-3508-8458

Emre Bayram 0000-0001-7672-250X

Şeyma Nur Gerçekcioğlu 0000-0002-3905-6234

Tunahan Döken 0000-0002-0008-0130

Publication Date January 20, 2023
Acceptance Date November 30, 2022
Published in Issue Year 2023 Volume: 28 Issue: 1

Cite

Vancouver Bayram M, Bayram E, Gerçekcioğlu ŞN, Döken T. Farklı tamir materyalleriyle tedavisi yapılan eksternal servikal kök rezorpsiyonuna sahip dişlerin kırılma dayanımlarının değerlendirilmesi: Bir in vitro çalışma. Anatolian Clin. 2023;28(1):95-100.

13151 This Journal licensed under a CC BY-NC (Creative Commons Attribution-NonCommercial 4.0) International License.