Research Article
BibTex RIS Cite

Sıçanlarda akut ve kronik uygulanan harmalinin penisilin ile oluşturulmuş epileptiform aktivite üzerine etkisi

Year 2024, Volume: 29 Issue: 3, 304 - 317, 23.09.2024
https://doi.org/10.21673/anadoluklin.1433359

Abstract

Amaç: Harmalin (HR), modern tıbbı desteklemek amacıyla deneysel çalışmaların yapıldığı Banisteriopsis caapi ve Peganum harmala bitkilerinden elde edilen, monoamin oksidaz inhibitörü (MAOi) ve antioksidan bir alkaloiddir. Bu çalışmada kısa süreli ve uzun süreli HR tedavisinin sıçanlarda penisilin G ile indüklenen epileptik model üzerindeki elektrofizyolojik etkisi incelenmiştir.

Yöntemler: Seksen dört yetişkin erkek Wistar sıçan rastgele iki gruba ayrıldı. Akut gruba tek doz/gün HR, kronik gruba tekrarlayan doz/gün HR verildi. Her grup ayrıca HR (10, 50 ve100 mg/kg) dozuna göre altı alt gruba ayrıldı. İntrakortikal penisilin uygulamasıyla deney gruplarında epileptiform aktivite (EA) tetiklendi. Elektrofizyolojik veriler, elektrokortikografi (ECoG) kullanılarak izlendi ve analiz edildi. HR’nin serbest radikal temizleyici etkilerini değerlendirmek için süperoksit dismutaz (SOD), katalaz (CAT), glutatyon peroksidaz (GPx) ve glutatyon redüktazın (GR) serum seviyeleri Enzim Bağlı İmmüno-Sorbent testi (ELISA) yöntemi kullanılarak ölçüldü. EA dalgalarının latensi, frekansı ve amplitüdü ile serum antioksidan belirteç düzeyleri istatistiksel olarak analiz edildi.

Bulgular: Sham grubunda EA görülmedi. Ancak sonuçlar hem akut hem de kronik HR tedavisinin nöbet eşiğini doza bağlı olarak arttırdığını gösterdi (p<0.05). Akut HR grubu kontrol ve diğer gruplarla karşılaştırıldığında diken dalga deşarjlarının sıklığı ve genliğinde 10. periyoda kadar düşürürken, kalan periyotlarda bu parametreleri etkilemediği gözlendi. Kronik gruplarda diken dalga frekansı ve diken dalga genliği açısından bazı zaman dilimleri dışında anlamlı fark görülmedi. Ayrıca kronik HR grubunun antioksidan enzim düzeylerinde kontrol ve diğer gruplara göre anlamlı bir artış görülürken (P<0.05) akut gruplarda anlamlı fark oluşmadı.

Sonuç: Harmalinin Kronik HR gruplarında ve akut HR gruplarının 10. periyotundan sonra diken dalga frekanslarını ve genliklerini etkilemediği görüldü. HR akut ve kronik gruplarda ilk EA başlama latensini uzattı ve uzun süreli kullanımda antioksidan etkiye sahip olabilir.

Project Number

BAP-2018.04.01.851.

References

  • Lolk K, Lange T, Elwert F, Dreier JW, Christensen J. Traumatic brain injury, stroke, and epilepsy: A mediation study in a Danish nationwide cohort. Epilepsia. 2023;64(3):718-27.
  • Czuczwar SJ. Epilepsy [Internet]. Brisbane (AU): Exon Publications; 2022. pp. 50-71.
  • Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev. 2020;72(3):606-38.
  • Chen TS, Huang TH, Lai MC, Huang CW. The Role of Glutamate Receptors in Epilepsy. Biomedicines. 2023;11(3):783.
  • de Melo AD, Freire VAF, Diogo ÍL, Santos HL, Barbosa LA, de Carvalho LED. Antioxidant Therapy Reduces Oxidative Stress, Restores Na,K-ATPase Function and Induces Neuroprotection in Rodent Models of Seizure and Epilepsy: A Systematic Review and Meta-Analysis. Antioxidants (Basel). 2023;12(7):1397.
  • Marangoz C, Bağirici F. Effects of L-arginine on penicillin-induced epileptiform activity in rats. Jpn J Pharmacol. 2001;86(3):297-301.
  • Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475-82.
  • Im JH, Jin YR, Lee JJ, et al. Antiplatelet activity of beta-carboline alkaloids from Perganum harmala: a possible mechanism through inhibiting PLCgamma2 phosphorylation. Vascul Pharmacol. 2009;50(5-6):147-52.
  • Kaur J, Famta P, Famta M, et al. Potential anti-epileptic phytoconstituents: An updated review. J Ethnopharmacol. 2021;268:113565.
  • Song Y, Kesuma D, Wang J, et al. Specific inhibition of cyclin-dependent kinases and cell proliferation by harmine. Biochem Biophys Res Commun. 2004;317(1):128-32.
  • Rahimian Z, Sadrian S, Shahisavandi M, et al. Antiseizure Effects of Peganum harmala L. and Lavandula angustifolia. Biomed Res Int. 2023;2023:4121998.
  • Castel-Branco MM, Alves GL, Figueiredo IV, Falcão AC, Caramona MM. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods Find Exp Clin Pharmacol. 2009;31(2):101-6.
  • Goldschen-Ohm MP. Benzodiazepine Modulation of GABAA Receptors: A Mechanistic Perspective. Biomolecules. 2022;12(12):1784.
  • Herraiz T, Guillén H. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions. Biomed Res Int. 2018;2018:4810394.
  • Maan G, Sikdar B, Kumar A, Shukla R, Mishra A. Role of Flavonoids in Neurodegenerative Diseases: Limitations and Future Perspectives. Curr Top Med Chem. 2020;20(13):1169-94.
  • Łukawski K, Czuczwar SJ. Oxidative Stress and Neurodegeneration in Animal Models of Seizures and Epilepsy. Antioxidants (Basel). 2023;12(5):1049.
  • Shahrajabian MH, Sun W, Cheng Q. Improving health benefits with considering traditional and modern health benefits of Peganum harmala. Clin Phytosci. 2021;7(1):18-32.
  • Aricioglu F, Yillar O, Korcegez E, Berkman K. Effect of harmane on the convulsive threshold in epilepsy models in mice. Ann N Y Acad Sci. 2003;1009:190-5.
  • Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Erlbaum; 1988.
  • Larit F, León F. Therapeutics to Treat Psychiatric and Neurological Disorders: A Promising Perspective from Algerian Traditional Medicine. Plants (Basel). 2023;12(22):3860.
  • Nafisi S, Bonsaii M, Maali P, Khalilzadeh MA, Manouchehri F. Beta-carboline alkaloids bind DNA. J Photochem Photobiol B. 2010;100(2):84-91.
  • McDaniel SS, Wong M. Therapeutic role of mammalian target of rapamycin (mTOR) inhibition in preventing epileptogenesis. Neurosci Lett. 2011;497(3):231-9.
  • Vrabec R, Blunden G, Cahlíková L. Natural Alkaloids as Multi-Target Compounds towards Factors Implicated in Alzheimer’s Disease. Int J Mol Sci. 2023;24(5):4399.
  • Doskaliyev A, Seidakhmetova R, Tutai DS, Goldaeva K, Surov V, Adekenov S. Alkaloids of Peganum harmala L. and their Pharmacological Activity. Open Access Maced J Med Sci. 2021;9(A):766-75.
  • Jewett BE, Thapa B. Physiology, NMDA Receptor. Treasure Island (FL): StatPearls Publishing; 2022. pp. 20-56.
  • Golub VM, Reddy DS. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol Rev. 2022;74(2):387-438.
  • Rodríguez L, López A, Moyna G, et al. New Insights into the Chemical Composition of Ayahuasca. ACS Omega. 2022;7(14):12307-17.
  • Baru Venkata R, Prasanth DSNBK, Pasala PK, et al. Utilizing Andrographis paniculata leaves and roots by effective usage of the bioactive andrographolide and its nanodelivery: investigation of antikindling and antioxidant activities through in silico and in vivo studies. Front Nutr. 2023;10:1185236.
  • Trindade-Filho EM, de Castro-Neto EF, de A Carvalho R, et al. Serotonin depletion effects on the pilocarpine model of epilepsy. Epilepsy Res. 2008;82(2-3):194-9.
  • Abdulrahman M, Alshahrani M. Antiepileptic effect of ethanolic extract of seeds of Peganum harmala on maximal electroshock seizure model in albino mice. Int J Allied Med Sci Clin Res. 2016;4(3):529-35.
  • Tsabang N, Guedje NM, Fokunang C, et al. Ethnopharmacological and Ethnomedical Study of Anti-Epileptic Plants used in Traditional Medicine in Yaounde and its Surroundings Areas (Cameroon). J Biol Chem Res. 2016;33(1):496-509.
  • Marwat SK, Rehman F. Medicinal and Pharmacological Potential of Harmala (Peganum harmala L.) Seeds. Nuts and Seeds in Health and Disease Prevention. Academic Press: San Diego, USA; 2011. pp. 585-599.
  • Thurman DJ, Beghi E, Begley CE, et al. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia. 2011;52 Suppl 7:2-26.
  • Grosso C, Santos M, Barroso MF. From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders. Antioxidants (Basel). 2023;12(8):1603.
  • Dewanjee S, Sohel M, Hossain MS, et al. A comprehensive review on clinically proven natural products in the management of nerve pain, with mechanistic insights. Heliyon. 2023;9(5):e15346.
  • Ethemoglu MS, Kutlu S, Seker FB, Erdogan CS, Bingol CA, Yilmaz B. Effects of agomelatine on electrocorticogram activity on penicillin-induced seizure model of rats. Neurosci Lett. 2019;690:120-125.
  • Ghasemi M, Schachter SC. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav. 2011;22(4):617-40.
  • Handforth A. Harmaline tremor: underlying mechanisms in a potential animal model of essential tremor. Tremor Other Hyperkinet Mov (N Y). 2012;2:02-92-769-1.
  • Marangoz C, Bağirici F. Effects of L-arginine on penicillin-induced epileptiform activity in rats. Jpn J Pharmacol. 2001;86(3):297-301.
  • de Melo AD, Freire VAF, Diogo ÍL, Santos HL, Barbosa LA, de Carvalho LED. Antioxidant Therapy Reduces Oxidative Stress, Restores Na,K-ATPase Function and Induces Neuroprotection in Rodent Models of Seizure and Epilepsy: A Systematic Review and Meta-Analysis. Antioxidants (Basel). 2023;12(7):1397.
  • Ngugi AK, Kariuki SM, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Incidence of epilepsy: a systematic review and meta-analysis. Neurology. 2011;77(10):1005-12.
  • Pimpinella G, Palmery M. Interaction of beta-carbolines with central dopaminergic transmission in mice: structure-activity relationships. Neurosci Lett. 1995;189(2):121-4.
  • Yildirim M, Marangoz AH, Ayyildiz M, Ankarali S, Marangoz C. The interactions of nitric oxide and adenosine on penicillin-induced epileptiform activity in rats. Acta Neurobiol Exp (Wars). 2011;71(2):208-19.

The effect of acute and chronic harmaline administration on penicillin-induced epileptiform activity in rats

Year 2024, Volume: 29 Issue: 3, 304 - 317, 23.09.2024
https://doi.org/10.21673/anadoluklin.1433359

Abstract

Aim: Harmaline (HR) is a monoamine oxidase inhibitor (MAOi) and antioxidant alkaloid obtained from Banisteriopsis caapi and Peganum harmala, where experimental studies have been conducted to support modern medicine. The electrophysiological impact of short-term and long-term HR treatment on the penicillin G-induced epileptic model in rats was examined in this study.

Methods: Eighty-four adult male Wistar rats were randomly assigned to two groups: one received a single dose/day of HR, and the other received repeated doses/days of HR. Each group was further divided into six subgroups based on the dose of HR (10, 50, and 100 mg/kg). Epileptiform activity (EA) was triggered in the experimental groups with intracortical penicillin administration. Electrophysiological data were collected and analyzed using electrocorticography (ECoG). The serum levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) were measured using the Enzyme-Linked Immuno Sorbent Assay (ELISA) method to assess the free radical scavenger effects of HR. The latency, frequency, and amplitude of EA waves and serum antioxidant marker levels were analyzed statistically.

Results: There was no observed EA in the sham group. Nevertheless, the results showed that both acute and chronic HR treatment increased the seizure threshold dose-dependently (p<0.05). It was observed that the acute HR group reduced the frequency and amplitude of spike-wave discharges up to the 10th period, compared to the control and other groups, and did not affect these parameters in the remaining periods. No significant difference was observed in the chronic groups in terms of spike wave frequency and spike-wave amplitude, except for some time periods. In addition, while there was a significant increase in antioxidant enzyme levels of the chronic HR group compared to the control and other groups (P<0.05), there was no significant difference in the acute groups.

Conclusion: It was observed that HR did not affect spike wave frequencies and amplitudes in all acute groups, except for the 10th period and in chronic HR groups. HR prolonged the latency to first EA onset in acute and chronic groups and may have an antioxidant effect with long-term use.

Ethical Statement

The study received ethical approval from the Düzce University Animal Research Local Ethics Committee under the code 20180.1.1.

Supporting Institution

Bu tez Düzce Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi Komisyonu Başkanlığı tarafından BAP-2018.04.01.851 numaralı proje ile desteklenmiştir.

Project Number

BAP-2018.04.01.851.

References

  • Lolk K, Lange T, Elwert F, Dreier JW, Christensen J. Traumatic brain injury, stroke, and epilepsy: A mediation study in a Danish nationwide cohort. Epilepsia. 2023;64(3):718-27.
  • Czuczwar SJ. Epilepsy [Internet]. Brisbane (AU): Exon Publications; 2022. pp. 50-71.
  • Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev. 2020;72(3):606-38.
  • Chen TS, Huang TH, Lai MC, Huang CW. The Role of Glutamate Receptors in Epilepsy. Biomedicines. 2023;11(3):783.
  • de Melo AD, Freire VAF, Diogo ÍL, Santos HL, Barbosa LA, de Carvalho LED. Antioxidant Therapy Reduces Oxidative Stress, Restores Na,K-ATPase Function and Induces Neuroprotection in Rodent Models of Seizure and Epilepsy: A Systematic Review and Meta-Analysis. Antioxidants (Basel). 2023;12(7):1397.
  • Marangoz C, Bağirici F. Effects of L-arginine on penicillin-induced epileptiform activity in rats. Jpn J Pharmacol. 2001;86(3):297-301.
  • Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475-82.
  • Im JH, Jin YR, Lee JJ, et al. Antiplatelet activity of beta-carboline alkaloids from Perganum harmala: a possible mechanism through inhibiting PLCgamma2 phosphorylation. Vascul Pharmacol. 2009;50(5-6):147-52.
  • Kaur J, Famta P, Famta M, et al. Potential anti-epileptic phytoconstituents: An updated review. J Ethnopharmacol. 2021;268:113565.
  • Song Y, Kesuma D, Wang J, et al. Specific inhibition of cyclin-dependent kinases and cell proliferation by harmine. Biochem Biophys Res Commun. 2004;317(1):128-32.
  • Rahimian Z, Sadrian S, Shahisavandi M, et al. Antiseizure Effects of Peganum harmala L. and Lavandula angustifolia. Biomed Res Int. 2023;2023:4121998.
  • Castel-Branco MM, Alves GL, Figueiredo IV, Falcão AC, Caramona MM. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods Find Exp Clin Pharmacol. 2009;31(2):101-6.
  • Goldschen-Ohm MP. Benzodiazepine Modulation of GABAA Receptors: A Mechanistic Perspective. Biomolecules. 2022;12(12):1784.
  • Herraiz T, Guillén H. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions. Biomed Res Int. 2018;2018:4810394.
  • Maan G, Sikdar B, Kumar A, Shukla R, Mishra A. Role of Flavonoids in Neurodegenerative Diseases: Limitations and Future Perspectives. Curr Top Med Chem. 2020;20(13):1169-94.
  • Łukawski K, Czuczwar SJ. Oxidative Stress and Neurodegeneration in Animal Models of Seizures and Epilepsy. Antioxidants (Basel). 2023;12(5):1049.
  • Shahrajabian MH, Sun W, Cheng Q. Improving health benefits with considering traditional and modern health benefits of Peganum harmala. Clin Phytosci. 2021;7(1):18-32.
  • Aricioglu F, Yillar O, Korcegez E, Berkman K. Effect of harmane on the convulsive threshold in epilepsy models in mice. Ann N Y Acad Sci. 2003;1009:190-5.
  • Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Erlbaum; 1988.
  • Larit F, León F. Therapeutics to Treat Psychiatric and Neurological Disorders: A Promising Perspective from Algerian Traditional Medicine. Plants (Basel). 2023;12(22):3860.
  • Nafisi S, Bonsaii M, Maali P, Khalilzadeh MA, Manouchehri F. Beta-carboline alkaloids bind DNA. J Photochem Photobiol B. 2010;100(2):84-91.
  • McDaniel SS, Wong M. Therapeutic role of mammalian target of rapamycin (mTOR) inhibition in preventing epileptogenesis. Neurosci Lett. 2011;497(3):231-9.
  • Vrabec R, Blunden G, Cahlíková L. Natural Alkaloids as Multi-Target Compounds towards Factors Implicated in Alzheimer’s Disease. Int J Mol Sci. 2023;24(5):4399.
  • Doskaliyev A, Seidakhmetova R, Tutai DS, Goldaeva K, Surov V, Adekenov S. Alkaloids of Peganum harmala L. and their Pharmacological Activity. Open Access Maced J Med Sci. 2021;9(A):766-75.
  • Jewett BE, Thapa B. Physiology, NMDA Receptor. Treasure Island (FL): StatPearls Publishing; 2022. pp. 20-56.
  • Golub VM, Reddy DS. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol Rev. 2022;74(2):387-438.
  • Rodríguez L, López A, Moyna G, et al. New Insights into the Chemical Composition of Ayahuasca. ACS Omega. 2022;7(14):12307-17.
  • Baru Venkata R, Prasanth DSNBK, Pasala PK, et al. Utilizing Andrographis paniculata leaves and roots by effective usage of the bioactive andrographolide and its nanodelivery: investigation of antikindling and antioxidant activities through in silico and in vivo studies. Front Nutr. 2023;10:1185236.
  • Trindade-Filho EM, de Castro-Neto EF, de A Carvalho R, et al. Serotonin depletion effects on the pilocarpine model of epilepsy. Epilepsy Res. 2008;82(2-3):194-9.
  • Abdulrahman M, Alshahrani M. Antiepileptic effect of ethanolic extract of seeds of Peganum harmala on maximal electroshock seizure model in albino mice. Int J Allied Med Sci Clin Res. 2016;4(3):529-35.
  • Tsabang N, Guedje NM, Fokunang C, et al. Ethnopharmacological and Ethnomedical Study of Anti-Epileptic Plants used in Traditional Medicine in Yaounde and its Surroundings Areas (Cameroon). J Biol Chem Res. 2016;33(1):496-509.
  • Marwat SK, Rehman F. Medicinal and Pharmacological Potential of Harmala (Peganum harmala L.) Seeds. Nuts and Seeds in Health and Disease Prevention. Academic Press: San Diego, USA; 2011. pp. 585-599.
  • Thurman DJ, Beghi E, Begley CE, et al. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia. 2011;52 Suppl 7:2-26.
  • Grosso C, Santos M, Barroso MF. From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders. Antioxidants (Basel). 2023;12(8):1603.
  • Dewanjee S, Sohel M, Hossain MS, et al. A comprehensive review on clinically proven natural products in the management of nerve pain, with mechanistic insights. Heliyon. 2023;9(5):e15346.
  • Ethemoglu MS, Kutlu S, Seker FB, Erdogan CS, Bingol CA, Yilmaz B. Effects of agomelatine on electrocorticogram activity on penicillin-induced seizure model of rats. Neurosci Lett. 2019;690:120-125.
  • Ghasemi M, Schachter SC. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav. 2011;22(4):617-40.
  • Handforth A. Harmaline tremor: underlying mechanisms in a potential animal model of essential tremor. Tremor Other Hyperkinet Mov (N Y). 2012;2:02-92-769-1.
  • Marangoz C, Bağirici F. Effects of L-arginine on penicillin-induced epileptiform activity in rats. Jpn J Pharmacol. 2001;86(3):297-301.
  • de Melo AD, Freire VAF, Diogo ÍL, Santos HL, Barbosa LA, de Carvalho LED. Antioxidant Therapy Reduces Oxidative Stress, Restores Na,K-ATPase Function and Induces Neuroprotection in Rodent Models of Seizure and Epilepsy: A Systematic Review and Meta-Analysis. Antioxidants (Basel). 2023;12(7):1397.
  • Ngugi AK, Kariuki SM, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Incidence of epilepsy: a systematic review and meta-analysis. Neurology. 2011;77(10):1005-12.
  • Pimpinella G, Palmery M. Interaction of beta-carbolines with central dopaminergic transmission in mice: structure-activity relationships. Neurosci Lett. 1995;189(2):121-4.
  • Yildirim M, Marangoz AH, Ayyildiz M, Ankarali S, Marangoz C. The interactions of nitric oxide and adenosine on penicillin-induced epileptiform activity in rats. Acta Neurobiol Exp (Wars). 2011;71(2):208-19.
There are 43 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section ORIGINAL ARTICLE
Authors

Kayhan Özkan 0000-0002-5956-093X

Şerif Demir 0000-0002-0305-5758

Project Number BAP-2018.04.01.851.
Publication Date September 23, 2024
Submission Date February 7, 2024
Acceptance Date April 15, 2024
Published in Issue Year 2024 Volume: 29 Issue: 3

Cite

Vancouver Özkan K, Demir Ş. The effect of acute and chronic harmaline administration on penicillin-induced epileptiform activity in rats. Anatolian Clin. 2024;29(3):304-17.

13151 This Journal licensed under a CC BY-NC (Creative Commons Attribution-NonCommercial 4.0) International License.