Research Article
BibTex RIS Cite

The Effect of Cultivar and Stage of Growth on the Fermentation, Aerobic Stability and Nutritive Value of Ensiled Quinoa

Year 2023, , 478 - 490, 31.03.2023
https://doi.org/10.15832/ankutbd.1126285

Abstract

Quinoa has the potential to be an important alternative source of silage as a forage crop. However, there is limited information on the ensiling of quinoa in the literature. This study investigates the silage fermentation quality, nutritive value and aerobic stability of quinoa cultivars harvested at different plant growing stages. The experiment was carried out in the experimental area of the Hatay Mustafa Kemal University, Faculty of Agriculture in the 2019 and 2020 growing seasons. The experiment was laid out in a split plot with a randomized block design with three replications, the three main plots were based on harvesting times (flowering, milky and dough stages) and the five sub-plots were based on cultivars (Mint Vanilla, Cherry Vanilla, French Vanilla, Red Head and Titicaca). Traits such as pH, ammonia nitrogen, lactic acid bacteria (LAB), LA, acetic acid (AA), butyric acid (BA), propionic acid, ethanol (EtOH), dry matter (DM), neutral detergent fiber, acid detergent fiber, acid detergent lignin, crude protein, ash, ether extract, water soluble carbohydrate (WSC) and relative feed value were analyzed in order to determine silage fermentation quality and nutritive value. In addition, all silages were evaluated in terms of aerobic stability. In reference to the interaction effects, pH, ammonia nitrogen, LAB, AA, BA and EtOH, the silage fermentation quality parameters were between 3.83-4.16, 5.57-14.83%, 4.69-5.80 log10cfu/g DM, 1.37-2.10%, 0.32-0.51% and 0.79-1.63, respectively. On the other hand, DM, ADF, ash and WSC changed between 21.95-33.36%, 22.39-28.36%, 15.41-17.70% and 2.35-9.50%, respectively, as silage nutritive composition features. The carbon dioxide production values of silages exposed to air were between 5.49 g/kg and 10.26 g/kg according to interactions. Among the evaluated quinoa cultivars, cv. Titicaca and cv. French Vanilla provided superior results in terms of fermentation quality compared to other cultivars. It was also determined that it would be more appropriate to harvest these superior quinoa cultivars during the dough stage for quality silage. Among the silages, the cv. Titicaca had the best aerobic stability. As a result of this study, it was concluded that cv. French Vanilla and cv. Titicaca should be harvested during the dough stage in order to obtain better silage quality. According to the results of this study, it was deduced that the quinoa plant could be an alternative ensiling crop.

Supporting Institution

Hatay Mustafa Kemal University

Project Number

19.M.004

Thanks

We are thankful to Hatay Mustafa Kemal University. We also give special thanks to Dr. Suleyman TEMEL from Igdir University for providing us plant material.

References

  • AOAC (2019) 21st edition. Official Methods of Analysis 2019 AOAC International.
  • Asbell P & Stenson S (1982). Ulcerative keratitis: survey of 30 years’ laboratory experience. Archives of Ophthalmology 100(1): 77-80. doi.org/10.1001/archopht.1982.01030030079005
  • Asher A, Galili S, Whitney T & Rubinovich L (2020). The potential of quinoa (Chenopodium quinoa) cultivation in Israel as a dualpurpose crop for grain production and livestock feed. Scientia Horticulturae 272: 109534. doi.org/10.1016/j.scienta.2020.109534
  • Atis I, Duru M, Konuskan O & Gozubenli H (2013). Effects of plant maturity stage on silage quality of some silage sorghum cultivars. Journal of Food, Agriculture & Environment 11(1): 534-537.
  • Bai Y, Zhou W X, Yan S H, Liu J, Zhang H & Jiang L (2011). Ensilaging water hyacinth: effects of water hyacinth compound silage on the performance of goat. Chinese Journal Animal Nutrition 23(2): 330-335 (in Chinese).
  • Bao W, Mi Z, Xu H, Zheng Y, Kwok L Y, Zhang H & Zhnag W (2016). Assessing quality of Medicago sativa silage by monitoring bacterial composition with single molecule, real-time sequencing technology and various physiological parameters. Scientific Reports 6: 28358. doi.org/10.1038/srep28358
  • Borreani G, Tabacco E, Schmidt R J, Holmes B J & Muck R E (2018). Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science 101(5): 3952-3979. doi.org/10.3168/jds.2017-13837
  • Bruning C L & Yokoyama M T (1988). Characteristics of live and killed brewer’s yeast slurries and intoxication by intraruminal administration to cattle. Journal of Animal Science 66(2): 585-591. doi.org/10.2527/jas1988.662585x
  • Butler T J & Muir J P (2003). Row spacing and maturity of forage sorghum silage in north central Texas. Forage Research in Texas https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/190831/article1411.pdf?sequence=1
  • Canpolat Ö & Karaman Ş (2009). Comparison of in vitro gas production, organic matter digestibility, relative feed value and metabolizable energy contents of some legume forages. Journal of Agricultural Sciences 15(2): 188-195.
  • Carmi A, Aharoni Y, Edelstein M, Umiel N, Hagiladi A, Yosef E, Nikbachat M, Zenou A & Miron J (2006). Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Animal Feed Science and Technology 131(1-2): 121-133. doi.org/10.1016/j.anifeedsci.2006.02.005
  • Darwinkel A (1997). Teelthandleiding wintertarwe. Praktijkonderzoek Plant & Omgeving BV, Sector AGV, Wageningen University and Research Centre, Wageningen.
  • Demirel M, Bolat D, Çelik S, Bakici Y & Çelik S (2006). Quality of silages from sunflower harvested at different vegetational stages. Journal of Applied Animal Research 30(2): 161-165. doi.org/10.1080/09712119.2006.9706610
  • Dubois M, Gilles K A, Hamilton J K, Rebers P A, & Smith F (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3): 350-356. doi.org/10.1021/ac60111a017
  • Erdogan H & Koca Y O (2020). Effect of quinoa-corn intercropping production system on yield and quality of mixture silage. Turkish Journal of Range and Forage Science, 1 (2): 57-65.
  • Ertekin I, Atis I, Aygun Y Z, Yilmaz S & Kizilsimsek M (2022). Effects of different nitrogen doses and cultivars on fermentation quality and nutritive value of Italian ryegrass (Lolium multiflorum Lam.) silages. Animal Bioscience 35(1): 39-46. doi.org/10.5713/ab.21.0113
  • Filya I (2003). Nutritive value of whole crop wheat silage harvested at three stages of maturity. Animal Feed Science and Technology 103(1-4): 85-95. doi.org/10.1016/S0377-8401(02)00284-5
  • Filya I (2004). Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Animal Feed Science and Technology 116(1-2): 141-150. doi.org/10.1016/j.anifeedsci.2004.06.003
  • Fuentes F & Bhargava A (2011). Morphological analysis of quinoa germplasm grown under lowland desert conditions. Journal of Agronomy and Crop Science 197(2): 124-134. doi.org/10.1111/j.1439-037X.2010.00445.x
  • Galwey N W (1992). The potential of quinoa as a multi-purpose crop for agricultural diversification: a review. Industrial Crops and Products 1(2-4): 101-106. doi.org/10.1016/0926-6690(92)90006-H
  • Kaya E & Kizil-Aydemir S (2020). Determining the forage yield, quality and nutritional element contents of quinoa cultivars and correlation analysis on these parameters. Pakistan Journal of Agricultural Sciences 57(2): 311-317.
  • Khota W, Pholsen S, Higgs D & Cai Y (2016). Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. Journal of Dairy Science 99(12): 9768-9781. doi.org/10.3168/jds.2016-11180
  • Kizilsimsek M, Erol A, Ertekin I, Donmez R & Katrancı B (2016). Relationship among silage micro flora and their effects on silage fermentation and quality. Kahramanmaras Sutcu Imam University Journal of Natural Sciences 19(2): 136-140.
  • Klevenhusen F, Kleefisch M-T & Zebeli Q (2019). Feeding hay rich in water-soluble carbohydrates improves ruminal pH without affecting rumination and systemic health in early lactation dairy cows. J Anim Physiol Anim Nutr (Berl) 103(2): 466-476. doi.org/10.1111/jpn.13051
  • Koç F, Özkan-Ünal E, Okuyucu B, Esen S & Işık R (2021). Effect of different kefir source on fermentation, aerobic stability, and microbial community of alfalfa silage. Animals (Basel) 11(7): 2096. doi.org/10.3390/ani11072096
  • Kung Jr L & Ranjit N K (2001). The e-ect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. Journal of Dairy Science 84(5): 1149-1155. doi.org/10.3168/jds.S0022-0302(01)74575-4
  • Kung Jr L & Shaver R D (2001). Interpretation and use of silage fermentation analysis reports. University of Wisconsin Extension, Madison. Focus on Forage 3(13):1-5.
  • Kung Jr L (2010). Understanding the biology of silage preservation to maximize quality and protect the environment. California alfalfa & forage symposium and Corn/Cereal Silage Conference (pp. 1-2). Visalia, CA: University of California, Davis, CA.
  • Kung Jr L, Robinson J R, Ranjit N K, Chen J H, Golt C M & Pesek J D (2000). Microbial populations, fermentation end-products, and aerobic stability of corn silage treated with ammonia or a propionic acid-based preservative. Journal of Dairy Science 83(7): 1479-1486. doi.org/10.3168/jds.S0022-0302(00)75020-X
  • Kung Jr L, Shaver R D, Grant R J & Schmidt R J (2018). Silage review: interpretation of chemical, microbial and organoleptic components of silages. Journal of Dairy Science 101(5): 4020-4033. doi.org/10.3168/jds.2017-13909
  • Liu M G, Yang Q, Yang M & Yang H M (2017). Advances in the studies on feeding potential and adaptability of Quinoa. Pratacultural Science 34(6): 1264-1271. (In Chinese with English abstract.).
  • Liu M, Yang M & Yang H (2021). Biomass production and nutritional characteristics of quinoa subjected to cutting and sowing date in the Midwestern China. Grassland Science 67(3): 215-224. doi.org/10.1111/grs.12307
  • McDonald P, Henderson A R & Heron S J E (1991). The Biochemistry of Silage, 2nd Edn. Mallow, Bucks (UK): Chalcombe Publications.
  • Muck R E (2010). Silage microbiology and its control through additives. Revista Brasileira de Zootecnia 39: 183-191. doi.org/10.1590/S1516-35982010001300021
  • Nabi C G, Riaz M & Ahmad G (2006). Comparison of some advanced lines of Sorghum bicolor L. Monech for green fodder/dry matter yields and morpho-economic parameters. Journal of Agricultural Research 44(3): 191-196
  • Pahlow G, Muck R E, Driehuis F, Elferink S J W H O & Spoelstra S F (2003). Microbiology of ensiling. In Madison (ed), Silage Science and Technology. Proceedings, Agronomy 42. Madison: ASCSSA-SSSA, pp. 31-93.
  • Peiretti P G, Gai F & Tassone S (2013). Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Animal Feed Science and Technology 183(1-2): 56-61. doi.org/10.1016/j.anifeedsci.2013.04.012
  • Pinho R M A, Santos E M & Silva T C (2016). Microbiologia e o processo de ensilagem. In Santos EM, Parente HN, Oliveira JS, Parente MOM (eds), Ensilagem de plantas forrageiras para o Semiárido. São Luís: Ed. EDUFMA, pp. 317.
  • Podkówka Z, Gesinski K & Podkówka L (2018). The influence of additives facilitating ensiling on the quality of quinoa (Chenopodium quinoa Willd.) silage. Journal of Central European Agriculture 19(3): 607-614. doi.org/10.5513/JCEA01/19.3.2237
  • Pozza M S S, Miglioranza L H S, Garcia J E, Pozza P C & Merguizo R (2011). Utilization of prebiotics by Lactobacillus spp. and antimicrobial resistance. Revista Higiene Alimentar 25(196-197): 99-103.
  • Ryu J, Kwon S J, Ahn J W, Ha B K, Jeong S W, Im S B, Kim J-B, Kim S H, Lee Y-K & Kang S-Y (2016). Evaluation of nutritive value and identification of fungi in silage from new kenaf (Hibiscus cannabinus) cultivars. International Journal of Agriculture & Biology 18(6): 1159-1168. doi.org/10.17957/IJAB/15.0220
  • Salama R, Yacout M H, Elgzar M I T & Awad A A (2021). Nutritional evaluation of quinoa (Chenopodium quinoa Willd) crop as unconventional forage resource in feeding ruminants. Egyptian Journal of Nutrition and Feeds 24(1): 77-84. doi.org/10.21608/EJNF.2021.170306
  • Santos E M, Pereira O G, Garcia R, Ferreira C L L F, Oliveira J S & Silva T C (2014). Effect of regrowth interval and a microbial inoculant on the fermentation profile and dry matter recovery of guinea grass silages. Journal of Dairy Science 97(7): 4423-4432. doi.org/10.3168/jds.2013-7634
  • Shah S S, Shi L, Li Z, Ren G, Zhou B & Qin P (2020). Yield, agronomic and forage quality traits of different quinoa (Chenopodium quinoa Willd.) genotypes in Northeast China. Agronomy 10(12): 1908. doi.org/10.3390/agronomy10121908
  • Siegfried R, Rückemann H & Stumpf G (1984) Eine HPLC-Methode zur Bestimmung organischer Säuren in Silagen (A HPLC method to determine organic acids in silages). Landwirtschaftliche Forschung 37: 298-304.
  • Silva V P, Pereira O G, Leandro E S, Paula R A, Agarussi M C N & Ribeiro K G (2020). Selection of lactic acid bacteria from alfalfa silage and its effects as inoculant on silage fermentation. Agriculture 10(11): 518. doi.org/10.3390/agriculture10110518
  • Tan M & Temel S (2020). Determination of roughage production of different quinoa (Chenopodium quinoa Willd.) varieties in dry conditions of Eastern Anatolia. International Journal of Agriculture and Wildlife Science 6(3): 554-561.
  • Tekce E & Gül M (2014). The importance of NDF and ADF in ruminant nutrition. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 9(1): 63-73.
  • Temel S & Yolcu S (2020). The effect of different sowing time and harvesting stages on the herbage yield and quality of quinoa (Chenopodium quinoa Willd.). Turkish Journal of Field Crops 25(1): 41-49. doi.org/10.17557/tjfc.737503
  • Tolentino D C, Rodrigues J A S, Pires D A D A, Veriato F T, Lima L O B & Moura M M A (2016). The quality of silage of different sorghum genotypes. Acta Scientiarum 38(2): 143-149. doi.org/10.4025/actascianimsci.v38i2.29030
  • Uke O, Kale H, Kaplan M & Kamalak A (2017). Effects of maturity stages on hay yield and quality, gas and methane production of quinoa (Chenopodium quinoa Willd.). KSU Journal of Natural Sciences 20(1): 42-46.
  • Van Soest P J, Robertson J D & Lewis B A (1991). Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74(10): 3583-3597. doi.org/10.3168/jds.S0022-0302(91)78551-2
  • Whiter A G & Kung Jr L (2001). The effect of a dry or liquid application of Lactobacillus plantarum MTD1 on fermentation of alfalfa silage. Journal of Dairy Science 84(10): 2195-2202. doi.org/10.3168/jds.S0022-0302(01)74666-8
  • Wilkinson J M & Taivonen M I (2003). World silage: a survey of forage conservation around the world. Lincoln, UK: Chalcombe Publications.
  • Yavuz M (2005). Determination of some ruminant feeds’ relative feed value and in vitro digestion values. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi 22(1): 97-101.
  • Yilmaz S, Ertekin I, Atis I (2021). Forage yield and quality of quinoa (Chenopodium quinoa Willd.) genotypes harvested at different cutting stages under Mediterranean conditions. Turkish Journal of Field Crops 26(2): 202-209. doi.org/10.17557/tjfc.986893
Year 2023, , 478 - 490, 31.03.2023
https://doi.org/10.15832/ankutbd.1126285

Abstract

Project Number

19.M.004

References

  • AOAC (2019) 21st edition. Official Methods of Analysis 2019 AOAC International.
  • Asbell P & Stenson S (1982). Ulcerative keratitis: survey of 30 years’ laboratory experience. Archives of Ophthalmology 100(1): 77-80. doi.org/10.1001/archopht.1982.01030030079005
  • Asher A, Galili S, Whitney T & Rubinovich L (2020). The potential of quinoa (Chenopodium quinoa) cultivation in Israel as a dualpurpose crop for grain production and livestock feed. Scientia Horticulturae 272: 109534. doi.org/10.1016/j.scienta.2020.109534
  • Atis I, Duru M, Konuskan O & Gozubenli H (2013). Effects of plant maturity stage on silage quality of some silage sorghum cultivars. Journal of Food, Agriculture & Environment 11(1): 534-537.
  • Bai Y, Zhou W X, Yan S H, Liu J, Zhang H & Jiang L (2011). Ensilaging water hyacinth: effects of water hyacinth compound silage on the performance of goat. Chinese Journal Animal Nutrition 23(2): 330-335 (in Chinese).
  • Bao W, Mi Z, Xu H, Zheng Y, Kwok L Y, Zhang H & Zhnag W (2016). Assessing quality of Medicago sativa silage by monitoring bacterial composition with single molecule, real-time sequencing technology and various physiological parameters. Scientific Reports 6: 28358. doi.org/10.1038/srep28358
  • Borreani G, Tabacco E, Schmidt R J, Holmes B J & Muck R E (2018). Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science 101(5): 3952-3979. doi.org/10.3168/jds.2017-13837
  • Bruning C L & Yokoyama M T (1988). Characteristics of live and killed brewer’s yeast slurries and intoxication by intraruminal administration to cattle. Journal of Animal Science 66(2): 585-591. doi.org/10.2527/jas1988.662585x
  • Butler T J & Muir J P (2003). Row spacing and maturity of forage sorghum silage in north central Texas. Forage Research in Texas https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/190831/article1411.pdf?sequence=1
  • Canpolat Ö & Karaman Ş (2009). Comparison of in vitro gas production, organic matter digestibility, relative feed value and metabolizable energy contents of some legume forages. Journal of Agricultural Sciences 15(2): 188-195.
  • Carmi A, Aharoni Y, Edelstein M, Umiel N, Hagiladi A, Yosef E, Nikbachat M, Zenou A & Miron J (2006). Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Animal Feed Science and Technology 131(1-2): 121-133. doi.org/10.1016/j.anifeedsci.2006.02.005
  • Darwinkel A (1997). Teelthandleiding wintertarwe. Praktijkonderzoek Plant & Omgeving BV, Sector AGV, Wageningen University and Research Centre, Wageningen.
  • Demirel M, Bolat D, Çelik S, Bakici Y & Çelik S (2006). Quality of silages from sunflower harvested at different vegetational stages. Journal of Applied Animal Research 30(2): 161-165. doi.org/10.1080/09712119.2006.9706610
  • Dubois M, Gilles K A, Hamilton J K, Rebers P A, & Smith F (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3): 350-356. doi.org/10.1021/ac60111a017
  • Erdogan H & Koca Y O (2020). Effect of quinoa-corn intercropping production system on yield and quality of mixture silage. Turkish Journal of Range and Forage Science, 1 (2): 57-65.
  • Ertekin I, Atis I, Aygun Y Z, Yilmaz S & Kizilsimsek M (2022). Effects of different nitrogen doses and cultivars on fermentation quality and nutritive value of Italian ryegrass (Lolium multiflorum Lam.) silages. Animal Bioscience 35(1): 39-46. doi.org/10.5713/ab.21.0113
  • Filya I (2003). Nutritive value of whole crop wheat silage harvested at three stages of maturity. Animal Feed Science and Technology 103(1-4): 85-95. doi.org/10.1016/S0377-8401(02)00284-5
  • Filya I (2004). Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Animal Feed Science and Technology 116(1-2): 141-150. doi.org/10.1016/j.anifeedsci.2004.06.003
  • Fuentes F & Bhargava A (2011). Morphological analysis of quinoa germplasm grown under lowland desert conditions. Journal of Agronomy and Crop Science 197(2): 124-134. doi.org/10.1111/j.1439-037X.2010.00445.x
  • Galwey N W (1992). The potential of quinoa as a multi-purpose crop for agricultural diversification: a review. Industrial Crops and Products 1(2-4): 101-106. doi.org/10.1016/0926-6690(92)90006-H
  • Kaya E & Kizil-Aydemir S (2020). Determining the forage yield, quality and nutritional element contents of quinoa cultivars and correlation analysis on these parameters. Pakistan Journal of Agricultural Sciences 57(2): 311-317.
  • Khota W, Pholsen S, Higgs D & Cai Y (2016). Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. Journal of Dairy Science 99(12): 9768-9781. doi.org/10.3168/jds.2016-11180
  • Kizilsimsek M, Erol A, Ertekin I, Donmez R & Katrancı B (2016). Relationship among silage micro flora and their effects on silage fermentation and quality. Kahramanmaras Sutcu Imam University Journal of Natural Sciences 19(2): 136-140.
  • Klevenhusen F, Kleefisch M-T & Zebeli Q (2019). Feeding hay rich in water-soluble carbohydrates improves ruminal pH without affecting rumination and systemic health in early lactation dairy cows. J Anim Physiol Anim Nutr (Berl) 103(2): 466-476. doi.org/10.1111/jpn.13051
  • Koç F, Özkan-Ünal E, Okuyucu B, Esen S & Işık R (2021). Effect of different kefir source on fermentation, aerobic stability, and microbial community of alfalfa silage. Animals (Basel) 11(7): 2096. doi.org/10.3390/ani11072096
  • Kung Jr L & Ranjit N K (2001). The e-ect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. Journal of Dairy Science 84(5): 1149-1155. doi.org/10.3168/jds.S0022-0302(01)74575-4
  • Kung Jr L & Shaver R D (2001). Interpretation and use of silage fermentation analysis reports. University of Wisconsin Extension, Madison. Focus on Forage 3(13):1-5.
  • Kung Jr L (2010). Understanding the biology of silage preservation to maximize quality and protect the environment. California alfalfa & forage symposium and Corn/Cereal Silage Conference (pp. 1-2). Visalia, CA: University of California, Davis, CA.
  • Kung Jr L, Robinson J R, Ranjit N K, Chen J H, Golt C M & Pesek J D (2000). Microbial populations, fermentation end-products, and aerobic stability of corn silage treated with ammonia or a propionic acid-based preservative. Journal of Dairy Science 83(7): 1479-1486. doi.org/10.3168/jds.S0022-0302(00)75020-X
  • Kung Jr L, Shaver R D, Grant R J & Schmidt R J (2018). Silage review: interpretation of chemical, microbial and organoleptic components of silages. Journal of Dairy Science 101(5): 4020-4033. doi.org/10.3168/jds.2017-13909
  • Liu M G, Yang Q, Yang M & Yang H M (2017). Advances in the studies on feeding potential and adaptability of Quinoa. Pratacultural Science 34(6): 1264-1271. (In Chinese with English abstract.).
  • Liu M, Yang M & Yang H (2021). Biomass production and nutritional characteristics of quinoa subjected to cutting and sowing date in the Midwestern China. Grassland Science 67(3): 215-224. doi.org/10.1111/grs.12307
  • McDonald P, Henderson A R & Heron S J E (1991). The Biochemistry of Silage, 2nd Edn. Mallow, Bucks (UK): Chalcombe Publications.
  • Muck R E (2010). Silage microbiology and its control through additives. Revista Brasileira de Zootecnia 39: 183-191. doi.org/10.1590/S1516-35982010001300021
  • Nabi C G, Riaz M & Ahmad G (2006). Comparison of some advanced lines of Sorghum bicolor L. Monech for green fodder/dry matter yields and morpho-economic parameters. Journal of Agricultural Research 44(3): 191-196
  • Pahlow G, Muck R E, Driehuis F, Elferink S J W H O & Spoelstra S F (2003). Microbiology of ensiling. In Madison (ed), Silage Science and Technology. Proceedings, Agronomy 42. Madison: ASCSSA-SSSA, pp. 31-93.
  • Peiretti P G, Gai F & Tassone S (2013). Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Animal Feed Science and Technology 183(1-2): 56-61. doi.org/10.1016/j.anifeedsci.2013.04.012
  • Pinho R M A, Santos E M & Silva T C (2016). Microbiologia e o processo de ensilagem. In Santos EM, Parente HN, Oliveira JS, Parente MOM (eds), Ensilagem de plantas forrageiras para o Semiárido. São Luís: Ed. EDUFMA, pp. 317.
  • Podkówka Z, Gesinski K & Podkówka L (2018). The influence of additives facilitating ensiling on the quality of quinoa (Chenopodium quinoa Willd.) silage. Journal of Central European Agriculture 19(3): 607-614. doi.org/10.5513/JCEA01/19.3.2237
  • Pozza M S S, Miglioranza L H S, Garcia J E, Pozza P C & Merguizo R (2011). Utilization of prebiotics by Lactobacillus spp. and antimicrobial resistance. Revista Higiene Alimentar 25(196-197): 99-103.
  • Ryu J, Kwon S J, Ahn J W, Ha B K, Jeong S W, Im S B, Kim J-B, Kim S H, Lee Y-K & Kang S-Y (2016). Evaluation of nutritive value and identification of fungi in silage from new kenaf (Hibiscus cannabinus) cultivars. International Journal of Agriculture & Biology 18(6): 1159-1168. doi.org/10.17957/IJAB/15.0220
  • Salama R, Yacout M H, Elgzar M I T & Awad A A (2021). Nutritional evaluation of quinoa (Chenopodium quinoa Willd) crop as unconventional forage resource in feeding ruminants. Egyptian Journal of Nutrition and Feeds 24(1): 77-84. doi.org/10.21608/EJNF.2021.170306
  • Santos E M, Pereira O G, Garcia R, Ferreira C L L F, Oliveira J S & Silva T C (2014). Effect of regrowth interval and a microbial inoculant on the fermentation profile and dry matter recovery of guinea grass silages. Journal of Dairy Science 97(7): 4423-4432. doi.org/10.3168/jds.2013-7634
  • Shah S S, Shi L, Li Z, Ren G, Zhou B & Qin P (2020). Yield, agronomic and forage quality traits of different quinoa (Chenopodium quinoa Willd.) genotypes in Northeast China. Agronomy 10(12): 1908. doi.org/10.3390/agronomy10121908
  • Siegfried R, Rückemann H & Stumpf G (1984) Eine HPLC-Methode zur Bestimmung organischer Säuren in Silagen (A HPLC method to determine organic acids in silages). Landwirtschaftliche Forschung 37: 298-304.
  • Silva V P, Pereira O G, Leandro E S, Paula R A, Agarussi M C N & Ribeiro K G (2020). Selection of lactic acid bacteria from alfalfa silage and its effects as inoculant on silage fermentation. Agriculture 10(11): 518. doi.org/10.3390/agriculture10110518
  • Tan M & Temel S (2020). Determination of roughage production of different quinoa (Chenopodium quinoa Willd.) varieties in dry conditions of Eastern Anatolia. International Journal of Agriculture and Wildlife Science 6(3): 554-561.
  • Tekce E & Gül M (2014). The importance of NDF and ADF in ruminant nutrition. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 9(1): 63-73.
  • Temel S & Yolcu S (2020). The effect of different sowing time and harvesting stages on the herbage yield and quality of quinoa (Chenopodium quinoa Willd.). Turkish Journal of Field Crops 25(1): 41-49. doi.org/10.17557/tjfc.737503
  • Tolentino D C, Rodrigues J A S, Pires D A D A, Veriato F T, Lima L O B & Moura M M A (2016). The quality of silage of different sorghum genotypes. Acta Scientiarum 38(2): 143-149. doi.org/10.4025/actascianimsci.v38i2.29030
  • Uke O, Kale H, Kaplan M & Kamalak A (2017). Effects of maturity stages on hay yield and quality, gas and methane production of quinoa (Chenopodium quinoa Willd.). KSU Journal of Natural Sciences 20(1): 42-46.
  • Van Soest P J, Robertson J D & Lewis B A (1991). Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74(10): 3583-3597. doi.org/10.3168/jds.S0022-0302(91)78551-2
  • Whiter A G & Kung Jr L (2001). The effect of a dry or liquid application of Lactobacillus plantarum MTD1 on fermentation of alfalfa silage. Journal of Dairy Science 84(10): 2195-2202. doi.org/10.3168/jds.S0022-0302(01)74666-8
  • Wilkinson J M & Taivonen M I (2003). World silage: a survey of forage conservation around the world. Lincoln, UK: Chalcombe Publications.
  • Yavuz M (2005). Determination of some ruminant feeds’ relative feed value and in vitro digestion values. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi 22(1): 97-101.
  • Yilmaz S, Ertekin I, Atis I (2021). Forage yield and quality of quinoa (Chenopodium quinoa Willd.) genotypes harvested at different cutting stages under Mediterranean conditions. Turkish Journal of Field Crops 26(2): 202-209. doi.org/10.17557/tjfc.986893
There are 56 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

İbrahim Ertekin 0000-0003-1393-8084

İbrahim Atış 0000-0002-0510-9625

Şaban Yılmaz 0000-0003-2558-5802

Project Number 19.M.004
Publication Date March 31, 2023
Submission Date June 5, 2022
Acceptance Date September 6, 2022
Published in Issue Year 2023

Cite

APA Ertekin, İ., Atış, İ., & Yılmaz, Ş. (2023). The Effect of Cultivar and Stage of Growth on the Fermentation, Aerobic Stability and Nutritive Value of Ensiled Quinoa. Journal of Agricultural Sciences, 29(2), 478-490. https://doi.org/10.15832/ankutbd.1126285

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).