Research Article
BibTex RIS Cite

Investigation of Antibacterial and Antifungal Efficacy of Zinc and Silver Nanoparticles Synthesized from Nasturtium officinale

Year 2023, , 788 - 799, 25.09.2023
https://doi.org/10.15832/ankutbd.1163132

Abstract

Nanoparticles are nano-sized materials that can be widely used in fields such as medicine, pharmacology, and industry. The use of natural and easily available materials in nanoparticle synthesis is preferred because it is economical. Plants are extremely suitable for the synthesis of nanoparticles due to their natural and easy availability and the large number of components they contain with different properties. For this purpose, silver nanoparticles and zinc nanoparticles (AgNPs and ZnNPs), two different nanoparticles were synthesized from an edible plant, watercress (Nasturtium officinale). SEM (Scanning electron microscopy), SEM-EDX (Scanning electron microscopy-Energy dispersive X-ray), UV-VIS spectroscopy, XRD (X-ray crystallography), and FTIR (Fourier Transform Infrared Spectrophotometer) analyses of these nanoparticles were performed. In addition, the antimicrobial effects of these synthesized nanoparticles were determined by the disk diffusion method. As a result, nanoparticles obtained from Nasturtium officinale were effective on gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa), gram-positive bacteria (Staphylococcus aureus, Streptococcus pyogenes), and fungi (Candida albicans). In particular, AgNPs with broad-spectrum antimicrobial activity were obtained from the watercress. While ZnNPs showed inhibition effects of 49% on K. pneumoniae, 51% on S. aureus, and 62% on C. albicans, AgNPs showed inhibition effects of 93% on P. aeruginosa, 87% on S. aureus, 81% on E. coli, 80% on C. albicans, 72% on K. pneumoniae, and 56% on S. pyogenes. Thus, it has been shown that Nasturtium officinale can be used effectively in the production of new biotechnological products, especially with antimicrobial properties.

Thanks

I would like to thank Prof. Dr. Hasan AKAN for his contributions.

References

  • Adebayo-Tayo, B. C., Borode, S. O., & Alao, S. O. (2022). In–Vitro Antibacterial and Antifungal Efficacy of Greenly Fabricated Senna alata Leaf Extract Silver Nanoparticles and Silver Nanoparticle-Cream Blend. Periodica Polytechnica Chemical Engineering, 66(2), 248–260. https://doi.org/10.3311/PPCH.18271
  • Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28. https://doi.org/10.1016/J.JARE.2015.02.007
  • Barker DJ. (2009). Pacific Northwest Aquatic Invasive Species Profile: Nasturtium officinale (Watercress). FSH, 423.
  • Ciursă, P., Pauliuc, D., Dranca, F., Ropciuc, S., & Oroian, M. (2021). Detection of honey adulterated with agave, corn, inverted sugar, maple and rice syrups using FTIR analysis. Food Control, 130, 108266. https://doi.org/10.1016/J.FOODCONT.2021.108266
  • Geraldes, A. N., da Silva, D. F., E Silva, L. G. D. A., Spinacé, E. V., Neto, A. O., & dos Santos, M. C. (2015). Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell. Journal of Power Sources, 293, 823–830. https://doi.org/10.1016/J.JPOWSOUR.2015.06.010
  • Gonçalves, E. M., Cruz, R. M. S., Abreu, M., Brandão, T. R. S., & Silva, C. L. M. (2009). Biochemical and colour changes of watercress (Nasturtium officinale R. Br.) during freezing and frozen storage. Journal of Food Engineering, 93(1), 32–39. https://doi.org/10.1016/J.JFOODENG.2008.12.027
  • Heilmann, A. (2003). Polymer Films with Embedded Metal Nanoparticles. 52. https://doi.org/10.1007/978-3-662-05233-4
  • Hosseini, M. A., Malekie, S., & Ebrahimi, N. (2020). The analysis of linear dose-responses in gamma-irradiated graphene oxide: Can FTIR analysis be considered a novel approach to examining the linear dose-responses in carbon nanostructures? Radiation Physics and Chemistry, 176, 109067. https://doi.org/10.1016/J.RADPHYSCHEM.2020.109067
  • Hubenthal, F. (2011). Noble Metal Nanoparticles: Synthesis and Optical Properties. In Comprehensive Nanoscience and Technology (Vols. 1–5). Elsevier Inc. https://doi.org/10.1016/B978-0-12-374396-1.00034-9
  • Ibrahim, H. M. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences, 8(3), 265–275. https://doi.org/10.1016/J.JRRAS.2015.01.007
  • Jeong, S. H., Yeo, S. Y., & Yi, S. C. (2005). The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. Journal of Materials Science 2005 40:20, 40(20), 5407–5411. https://doi.org/10.1007/S10853-005-4339-8
  • Khan, S., Almarhoon, Z. M., Bakht, J., Mabkhot, Y. N., Rauf, A., & Shad, A. A. (2022). Single-Step Acer pentapomicum-Mediated Green Synthesis of Silver Nanoparticles and Their Potential Antimicrobial and Antioxidant Activities. Journal of Nanomaterials, 2022. https://doi.org/10.1155/2022/3783420
  • Kim, K., Jung, B., Kim, J., & Kim, W. (2010). Effects of embedding non-absorbing nanoparticles in organic photovoltaics on power conversion efficiency. Solar Energy Materials and Solar Cells, 94(10), 1835–1839. https://doi.org/10.1016/J.SOLMAT.2010.05.049
  • Kouvaris, P., Delimitis, A., Zaspalis, V., Papadopoulos, D., Tsipas, S. A., & Michailidis, N. (2012). Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Materials Letters, 76, 18–20. https://doi.org/10.1016/J.MATLET.2012.02.025
  • Kumar, D. A., Palanichamy, V., & Roopan, S. M. (2014). Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127, 168–171. https://doi.org/10.1016/J.SAA.2014.02.058
  • Moodley, J. S., Krishna, S. B. N., Pillay, K., & Govender, P. (2020). Green Synthesis of Metal Nanoparticles for Antimicrobial Activity. Novel Nanomaterials. https://doi.org/10.5772/INTECHOPEN.94348
  • Natarajan, K., Selvaraj, S., & Ramachandramurty, V. (2010). Microbial Production of Silver Nanoparticles. Digest Journal of Nanomaterials and Biostructures, 5, 135–140. https://scirp.org/reference/referencespapers.aspx?referenceid=1961236
  • National Committee for Clinical Laboratory Standards. (1997). NCCLS Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard Enclose -A 7 (April 1997 ed.). NCCLS.
  • Parveen, S., Misra, R., & Sahoo, S. K. (2012). Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology and Medicine, 8(2), 147–166. https://doi.org/10.1016/J.NANO.2011.05.016
  • Phillips, J., Bowen, W., Cagin, E., & Wang, W. (2011). Electronic and Optoelectronic Devices Based on Semiconducting Zinc Oxide. Comprehensive Semiconductor Science and Technology, 1–6, 101–127. https://doi.org/10.1016/B978-0-44-453153-7.00025-0
  • Pourhassan-Moghaddam, M., Zarghami, N., Mohsenifar, A., Rahmati-Yamchi, M., Gholizadeh, D., Akbarzadeh, A., de La Guardia, M., & Nejati-Koshki, K. (2014). Watercress-based gold nanoparticles: biosynthesis, mechanism of formation and study of their biocompatibility in vitro. Micro & Nano Letters, 9(5), 345–350. https://doi.org/10.1049/MNL.2014.0063
  • Pugazhendhi, S., Palanisamy, P. K., & Jayavel, R. (2018). Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications. Optical Materials, 79, 457–463. https://doi.org/10.1016/J.OPTMAT.2018.04.017
  • Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/10.1016/J.BIOTECHADV.2008.09.002
  • Rangelova, N., Aleksandrov, L., & Yaneva, S. (2022). Synthesis and structure of amorphous SiO2/ZnO composites with potential application for azo dye degradation. Materials Today: Proceedings, 61, 1272–1279. https://doi.org/10.1016/J.MATPR.2022.03.064
  • Roopan, S. M., Rohit, Madhumitha, G., Rahuman, A. A., Kamaraj, C., Bharathi, A., & Surendra, T. v. (2013). Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Industrial Crops and Products, 43(1), 631–635. https://doi.org/10.1016/J.INDCROP.2012.08.013
  • Saini, I., Rozra, J., Chandak, N., Aggarwal, S., Sharma, P. K., & Sharma, A. (2013). Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Materials Chemistry and Physics, 139(2–3), 802–810. https://doi.org/10.1016/J.MATCHEMPHYS.2013.02.035
  • Shiju, N. R., & Guliants, V. v. (2009). Recent developments in catalysis using nanostructured materials. Applied Catalysis A: General, 356(1), 1–17. https://doi.org/10.1016/J.APCATA.2008.11.034
  • Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13(7), 2981–2988. https://doi.org/10.1007/S11051-010-0193-Y/TABLES/1
  • Slistan-Grijalva, A., Herrera-Urbina, R., Rivas-Silva, J. F., Ávalos-Borja, M., Castillón-Barraza, F. F., & Posada-Amarillas, A. (2005). Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Physica E: Low-Dimensional Systems and Nanostructures, 27(1–2), 104–112. https://doi.org/10.1016/J.PHYSE.2004.10.014
  • Wang, Z., Liu, Z., Gao, Z., Li, X., Eling, B., Pöselt, E., Schander, E., & Wang, Z. (2022). Structure transition of aliphatic m,6-Polyurethane during heating investigated using in-situ WAXS, SAXS, and FTIR. Polymer, 254, 125072. https://doi.org/10.1016/J.POLYMER.2022.125072
  • Yang, X., Chung, E., Johnston, I., Ren, G., & Cheong, Y. K. (2021). Exploitation of Antimicrobial Nanoparticles and Their Applications in Biomedical Engineering. Applied Sciences 2021, Vol. 11, Page 4520, 11(10), 4520. https://doi.org/10.3390/APP11104520
Year 2023, , 788 - 799, 25.09.2023
https://doi.org/10.15832/ankutbd.1163132

Abstract

References

  • Adebayo-Tayo, B. C., Borode, S. O., & Alao, S. O. (2022). In–Vitro Antibacterial and Antifungal Efficacy of Greenly Fabricated Senna alata Leaf Extract Silver Nanoparticles and Silver Nanoparticle-Cream Blend. Periodica Polytechnica Chemical Engineering, 66(2), 248–260. https://doi.org/10.3311/PPCH.18271
  • Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28. https://doi.org/10.1016/J.JARE.2015.02.007
  • Barker DJ. (2009). Pacific Northwest Aquatic Invasive Species Profile: Nasturtium officinale (Watercress). FSH, 423.
  • Ciursă, P., Pauliuc, D., Dranca, F., Ropciuc, S., & Oroian, M. (2021). Detection of honey adulterated with agave, corn, inverted sugar, maple and rice syrups using FTIR analysis. Food Control, 130, 108266. https://doi.org/10.1016/J.FOODCONT.2021.108266
  • Geraldes, A. N., da Silva, D. F., E Silva, L. G. D. A., Spinacé, E. V., Neto, A. O., & dos Santos, M. C. (2015). Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell. Journal of Power Sources, 293, 823–830. https://doi.org/10.1016/J.JPOWSOUR.2015.06.010
  • Gonçalves, E. M., Cruz, R. M. S., Abreu, M., Brandão, T. R. S., & Silva, C. L. M. (2009). Biochemical and colour changes of watercress (Nasturtium officinale R. Br.) during freezing and frozen storage. Journal of Food Engineering, 93(1), 32–39. https://doi.org/10.1016/J.JFOODENG.2008.12.027
  • Heilmann, A. (2003). Polymer Films with Embedded Metal Nanoparticles. 52. https://doi.org/10.1007/978-3-662-05233-4
  • Hosseini, M. A., Malekie, S., & Ebrahimi, N. (2020). The analysis of linear dose-responses in gamma-irradiated graphene oxide: Can FTIR analysis be considered a novel approach to examining the linear dose-responses in carbon nanostructures? Radiation Physics and Chemistry, 176, 109067. https://doi.org/10.1016/J.RADPHYSCHEM.2020.109067
  • Hubenthal, F. (2011). Noble Metal Nanoparticles: Synthesis and Optical Properties. In Comprehensive Nanoscience and Technology (Vols. 1–5). Elsevier Inc. https://doi.org/10.1016/B978-0-12-374396-1.00034-9
  • Ibrahim, H. M. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences, 8(3), 265–275. https://doi.org/10.1016/J.JRRAS.2015.01.007
  • Jeong, S. H., Yeo, S. Y., & Yi, S. C. (2005). The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. Journal of Materials Science 2005 40:20, 40(20), 5407–5411. https://doi.org/10.1007/S10853-005-4339-8
  • Khan, S., Almarhoon, Z. M., Bakht, J., Mabkhot, Y. N., Rauf, A., & Shad, A. A. (2022). Single-Step Acer pentapomicum-Mediated Green Synthesis of Silver Nanoparticles and Their Potential Antimicrobial and Antioxidant Activities. Journal of Nanomaterials, 2022. https://doi.org/10.1155/2022/3783420
  • Kim, K., Jung, B., Kim, J., & Kim, W. (2010). Effects of embedding non-absorbing nanoparticles in organic photovoltaics on power conversion efficiency. Solar Energy Materials and Solar Cells, 94(10), 1835–1839. https://doi.org/10.1016/J.SOLMAT.2010.05.049
  • Kouvaris, P., Delimitis, A., Zaspalis, V., Papadopoulos, D., Tsipas, S. A., & Michailidis, N. (2012). Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Materials Letters, 76, 18–20. https://doi.org/10.1016/J.MATLET.2012.02.025
  • Kumar, D. A., Palanichamy, V., & Roopan, S. M. (2014). Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127, 168–171. https://doi.org/10.1016/J.SAA.2014.02.058
  • Moodley, J. S., Krishna, S. B. N., Pillay, K., & Govender, P. (2020). Green Synthesis of Metal Nanoparticles for Antimicrobial Activity. Novel Nanomaterials. https://doi.org/10.5772/INTECHOPEN.94348
  • Natarajan, K., Selvaraj, S., & Ramachandramurty, V. (2010). Microbial Production of Silver Nanoparticles. Digest Journal of Nanomaterials and Biostructures, 5, 135–140. https://scirp.org/reference/referencespapers.aspx?referenceid=1961236
  • National Committee for Clinical Laboratory Standards. (1997). NCCLS Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard Enclose -A 7 (April 1997 ed.). NCCLS.
  • Parveen, S., Misra, R., & Sahoo, S. K. (2012). Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology and Medicine, 8(2), 147–166. https://doi.org/10.1016/J.NANO.2011.05.016
  • Phillips, J., Bowen, W., Cagin, E., & Wang, W. (2011). Electronic and Optoelectronic Devices Based on Semiconducting Zinc Oxide. Comprehensive Semiconductor Science and Technology, 1–6, 101–127. https://doi.org/10.1016/B978-0-44-453153-7.00025-0
  • Pourhassan-Moghaddam, M., Zarghami, N., Mohsenifar, A., Rahmati-Yamchi, M., Gholizadeh, D., Akbarzadeh, A., de La Guardia, M., & Nejati-Koshki, K. (2014). Watercress-based gold nanoparticles: biosynthesis, mechanism of formation and study of their biocompatibility in vitro. Micro & Nano Letters, 9(5), 345–350. https://doi.org/10.1049/MNL.2014.0063
  • Pugazhendhi, S., Palanisamy, P. K., & Jayavel, R. (2018). Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications. Optical Materials, 79, 457–463. https://doi.org/10.1016/J.OPTMAT.2018.04.017
  • Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/10.1016/J.BIOTECHADV.2008.09.002
  • Rangelova, N., Aleksandrov, L., & Yaneva, S. (2022). Synthesis and structure of amorphous SiO2/ZnO composites with potential application for azo dye degradation. Materials Today: Proceedings, 61, 1272–1279. https://doi.org/10.1016/J.MATPR.2022.03.064
  • Roopan, S. M., Rohit, Madhumitha, G., Rahuman, A. A., Kamaraj, C., Bharathi, A., & Surendra, T. v. (2013). Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Industrial Crops and Products, 43(1), 631–635. https://doi.org/10.1016/J.INDCROP.2012.08.013
  • Saini, I., Rozra, J., Chandak, N., Aggarwal, S., Sharma, P. K., & Sharma, A. (2013). Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Materials Chemistry and Physics, 139(2–3), 802–810. https://doi.org/10.1016/J.MATCHEMPHYS.2013.02.035
  • Shiju, N. R., & Guliants, V. v. (2009). Recent developments in catalysis using nanostructured materials. Applied Catalysis A: General, 356(1), 1–17. https://doi.org/10.1016/J.APCATA.2008.11.034
  • Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13(7), 2981–2988. https://doi.org/10.1007/S11051-010-0193-Y/TABLES/1
  • Slistan-Grijalva, A., Herrera-Urbina, R., Rivas-Silva, J. F., Ávalos-Borja, M., Castillón-Barraza, F. F., & Posada-Amarillas, A. (2005). Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Physica E: Low-Dimensional Systems and Nanostructures, 27(1–2), 104–112. https://doi.org/10.1016/J.PHYSE.2004.10.014
  • Wang, Z., Liu, Z., Gao, Z., Li, X., Eling, B., Pöselt, E., Schander, E., & Wang, Z. (2022). Structure transition of aliphatic m,6-Polyurethane during heating investigated using in-situ WAXS, SAXS, and FTIR. Polymer, 254, 125072. https://doi.org/10.1016/J.POLYMER.2022.125072
  • Yang, X., Chung, E., Johnston, I., Ren, G., & Cheong, Y. K. (2021). Exploitation of Antimicrobial Nanoparticles and Their Applications in Biomedical Engineering. Applied Sciences 2021, Vol. 11, Page 4520, 11(10), 4520. https://doi.org/10.3390/APP11104520
There are 31 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Makaleler
Authors

Leyla Ercan 0000-0002-6570-8128

Early Pub Date May 24, 2023
Publication Date September 25, 2023
Submission Date August 16, 2022
Acceptance Date January 27, 2023
Published in Issue Year 2023

Cite

APA Ercan, L. (2023). Investigation of Antibacterial and Antifungal Efficacy of Zinc and Silver Nanoparticles Synthesized from Nasturtium officinale. Journal of Agricultural Sciences, 29(3), 788-799. https://doi.org/10.15832/ankutbd.1163132

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).