Research Article
BibTex RIS Cite

Effect of Adding Lactic Acid Bacteria to Maize Silage on Nutritive Guality, Fermentation Properties and in Vitro Digestibility

Year 2023, , 1050 - 1058, 06.11.2023
https://doi.org/10.15832/ankutbd.1273724

Abstract

This study aimed to determine the effects of adding lactic acid bacteria to maize silage on the nutritional quality, fermentation properties, and its in vitro organic matter digestion (IVOMD). Pre-fermented juices (PFJ) prepared from different water-soluble carbohydrate (WSC) sources at the rate of 5% and commercial homofermentative and heterofermentative lactic acid bacteria (LAB) were added to silages. Groups were designed as (I) control, (II) Glucose-PFJ, (III) Fructose-PFJ, (IV) Sucrose-PFJ, (V) Molasses-PFJ, (VI) Homofermentative LAB (HoLAB) and (VII) Heterofermentative LAB (HetLAB). Lactic acid bacteria (LAB) count, lactic acid (LA), acetic acid (AA), LA/AA ratio, pH and yeast values of the natural fermented lactic acid bacteria liquids prepared by adding 5% of different easily soluble carbohydrate sources to meadow grass showed significant variations. The differences among the groups in the crude ash (CA), acid detergent fiber (ADF), IVOMD and methane (CH4) values of the silage groups prepared by adding PFJ were also found to be statistically significant. The differences in the fermentation characteristics of the silages (pH, ammonia-nitrogen (NH3-N), LA, AA, LA/AA, CO2, and total yeast mold after aerobic stability) were statistically significant too. When all parameters were examined, it was concluded that the addition of PFJ, which is prepared by adding 5% fructose to the meadow grass plant, to the maize silage has positive effects on IVOMD, ME, CH4, LA and yeast-mold and can be used instead of commercial inoculants.

References

  • Adesogan A T & Arriola K G (2020). Bacterial inoculants for improving silage quality and animal performance. In: Proceedings of the 82nd Cornell Nutrition Congress, 19-22 October, New York, pp. 42-57.
  • Ali N, Wang S, Zhao J, Dong Z, Li J, Naza M & Shao T (2020). Microbial diversity and fermentation profile of red clover silage inoculated with reconstituted indigenous and exogenous epiphytic microbiota. Bioresource Technology 314: 123606. https://doi.org/10.1016/j.biortech.2020.123606
  • Altınçekiç E (2006). The effect of combination of organic acid-bacterial inoculant on the fermentation, aerobic stability and feed value of maize silage. Master's Thesis, Uludağ University, Bursa, Türkiye.
  • AOAC (2005). Official methods of the association of official analytical chemists, 16th Edn. Arlington, TX: Association of Official Analytical Chemists.
  • Aragón Y A (2012). The use of probiotic strains as silage inoculants. In: E C Rigobelo (Eds.), Probiotics in Animals, Croatia, pp. 1-32. http://dx.doi.org/10.5772/50431
  • Ashbell G, Weinberg Z G, Azrieli A, Hen Y & Horev B (1991). A simple system to study the aerobic determination of silages. Canadian Agricultural Engineering 34: 171-175.
  • Axelsson L (1998). Lactic acid bacteria: classification and physiology. In: S. Salminen & A. von Wright, Lactic Acid Bacteria: Microbiology and Functional Aspects, 2nd (Edn), Revised and Expanded, Marcel Dekker, New York, pp. 1–72. https://doi.org/10.1201/9780824752033.ch1
  • Aydin S S & Denek N (2022). Amount of lactic acid bacteria in fermented natural lactic acid bacteria liquids prepared with varying sucrose inclusion at different incubation periods. Medycyna Weterynaryjna 78(9): 456-460. http://dx.doi.org/10.21521/mw.6686
  • Blajman J E, Vinderola G, Paez R B & Signorini ML (2020). The role of homofermentative and heterofermentative lactic acid bacteria for alfalfa silage: a meta-analysis. Journal of Agricultural Science 158(1-2): 107-118. https://doi.org/10.1017/S0021859620000386
  • Bureenok S, Namihira T, Tamaki M, Mizumachi S, Kawamoto Y & Nakada T (2005a). Fermentative quality of guineagrass silage by using fermented juice of the epiphytic lactic acid bacteria (FJLB) as a silage additive. Asian-Australasian Journal of Animal Sciences 18(6): 807-811. https://doi.org/10.5713/ajas.2005.807
  • Bureenok S, Namihira T, Kawamoto Y & Nakada T (2005b). Additive effects of fermented juice of epiphytic lactic acid bacteria on the fermentative quality of guineagrass (Panicum maximum Jacq.) silage. Grassland Science 51(3): 243-248. https://doi.org/10.1111/j.1744-697X.2005.00032.x
  • Broderick G A & Kang J H (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science 63(1): 64-75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8
  • Can L (2010). Tritikale-Macar fiği hasılına enzim ve laktik asit bakterileri inokulant ilavesinin silaj kalitesi üzerine etkileri, Master's thesis. Namık Kemal University, Tekirdağ.
  • Cao Y, Cai Y, Takahashi T, Yoshida N, Tohno M, Uegaki R, ... & Terada F (2011). Effect of lactic acid bacteria inoculant and beet pulp addition on fermentation characteristics and in vitro ruminal digestion of vegetable residue silage. Journal of Dairy Science, 94(8): 3902-3912. https://doi.org/10.3168/jds.2010-3623
  • Carpintero C M, Henderson A R, & McDonald P (1979). The effect of some pre‐treatments on proteolysis during the ensiling of herbage. Grass and Forage Science 34(4): 311-315. https://doi.org/10.1111/j.1365-2494.1979.tb01483.x
  • Denek N, Can A, Avci M, Aksu T & Durmaz H (2011). The effect of molasses‐based pre‐fermented juice on the fermentation quality of first‐cut lucerne silage. Grass and Forage Science 66(2): 243-250. https://doi.org/10.1111/j.1365-2494.2011.00783.x
  • Ding Z T, Xu D M, Bai J, Li F H, Adesogan A T, Zhang P, ... & Guo X S (2019). Characterization and identification of ferulic acid esterase‐producing Lactobacillus species isolated from Elymus nutans silage and their application in ensiled alfalfa. Journal of Applied Microbiology 127(4): 985-995. https://doi.org/10.1111/jam.14374
  • DLG (Deustsche LandwiethshaftsGesellschaft) (2011). Praxishandbuch Futter-und Substratkonservierung. DLG-Verlags-GmbH, Frankfurt am Main, Germany, pp. 284-327.
  • Doyle N, Mbandlwa P, Kelly W J, Attwood G, Li Y, Ross R P, ... & Leahy S (2019). Use of lactic acid bacteria to reduce methane production in ruminants, a critical review. Frontiers in Microbiology, 2207. https://doi.org/10.3389/fmicb.2019.02207
  • Ellis J L, Bannink A, Hindrichsen I K, Kinley R D, Pellikaan W F, Milora N, & Dijkstra J (2016). The effect of lactic acid bacteria included as a probiotic or silage inoculant on in vitro rumen digestibility, total gas and methane production. Animal Feed Science and Technology 211: 61-74. https://doi.org/10.1016/j.anifeedsci.2015.10.016
  • Fabiszewska A U, Zielińska K J & Wróbel B (2019). Trends in designing microbial silage quality by biotechnological methods using lactic acid bacteria inoculants: a minireview. World Journal of Microbiology and Biotechnology 35(5): 1-8. https://doi.org/10.1007/s11274-019-2649-2
  • Filya İ (2002). The effects of lactic acid bacterial inoculants on the fermentation, aerobic stability and in situ rumen degradability characteristics of maize and sorghum silages. Turkish Journal of Veterinary and Animal Sciences 26(4): 815-823.
  • Filya I, Ashbell G, Hen Y & Weinberg Z G (2000). The effect of bacterial inoculants on the fermentation and aerobic stability of whole crop wheat silage. Animal Feed Science and Technology 88(1-2): 39-46. https://doi.org/10.1016/S0377-8401(00)00214-5
  • Filya I & Sucu E (2010). The effects of lactic acid bacteria on the fermentation, aerobic stability and nutritive value of maize silage. Grass and Forage Science, 65(4): 446-455. https://doi.org/10.1111/j.1365-2494.2010.00763.x
  • Filya I, Sucu E & Karabulut A (2004). The effect of Propionibacterium acidipropionici, with or without Lactobacillus plantarum, on the fermentation and aerobic stability of wheat, sorghum and maize silages. Journal of Applied Microbiology 97(4): 818-826. https://doi.org/10.1111/j.1365-2672.2004.02367.x
  • Goel G, Makkar H P S, & Becker K (2008). Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin‐rich fractions from different plant materials. Journal of Applied Microbiology 105(3): 770-777. https://doi.org/10.1111/j.1365-2672.2008.03818.x
  • Güney F & Ertürk Ö (2020). Determination of the effects of propolis ethanolic extract on some properties of fruit yoghurt during storage. Mustafa Kemal University Journal of Agricultural Sciences 25(2): 145-152. https://doi.org/10.37908/mkutbd.694712
  • Huyen N T, Martinez I & Pellikaan W (2020). Using lactic acid bacteria as silage inoculants or direct-fed microbials to improve in vitro degradability and reduce methane emissions in dairy cows. Agronomy 10(10): 1482. https://doi.org/10.3390/agronomy10101482
  • Jalč D, Laukova A, Pogány Simonová M, Váradyová Z, & Homolka P (2009a). Bacterial inoculant effects on corn silage fermentation and nutrient composition. Asian-Australasian Journal of Animal Sciences 22(7): 977-983. https://doi.org/10.5713/ajas.2009.80282
  • Jalč D, Laukova A, Varadyova Z, Homolka P & Koukolova V (2009b). Effect of inoculated grass silages on rumen fermentation and lipid metabolism in an artificial rumen (RUSITEC). Animal Feed Science and Technology, 151(1-2): 55-64. https://doi.org/10.1016/j.anifeedsci.2008.11.004
  • Jalč D, Váradyová Z, Lauková A, Homolka P, & Jančík F (2009c). Effect of inoculated corn silage on rumen fermentation and lipid metabolism in an artificial rumen (RUSITEC). Animal Feed Science and Technology 152(3-4): 256-266. https://doi.org/10.1016/j.anifeedsci.2009.04.019
  • Kılıç A (1986). Silo yemi (öğretim, öğrenim ve uygulama önerileri). Bilgehan Basımevi, İzmir, pp.327.
  • Kleinschmit D H & Kung Jr L (2006). The effects of Lactobacillus buchneri 40788 and Pediococcus pentosaceus R1094 on the fermentation of corn silage. Journal of Dairy Science 89(10): 3999-4004. https://doi.org/10.3168/jds.S0022-0302(06)72443-2
  • Masuko T, Hariyama Y, Takahashi Y, Cao L M, Goto M & Ohshima M (2002). Effect of addition of fermented juice of epiphytic lactic acid bacteria prepared from timothy (Phleum pratense) and orchardgrass (Dactylis glomerata) on fermentation quality of silages. Journal of Japanese Society of Grassland Science 120-125.
  • McDonald P, Henderson A R, Heron S J E (1991) Plant Enzymes. In: McDonald P, Henderson AR, Heron SJE (Eds.), The Biochemistry of Silage. Abersytwyth, UK, pp.48-80.
  • Menke K H, Raab L, Salewski A, Steingass H, Fritz D, & Schneider W (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science 93(1): 217-222. https://doi.org/10.1017/S0021859600086305
  • Menke K H & Steingass H (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28: 7-55. https://doi.org/10.2508/chikusan.79.483.
  • Muck R E (2013). Recent advances in silage microbiology. Agricultural and Food Science 22(1): 3-15. https://doi.org/10.23986/afsci.6718
  • Müller M & Lier D (1994). Fermentation of fructans by epiphytic lactic acid bacteria. Journal of Applied Microbiology 76(4): 406-411. https://doi.org/10.1111/j.1365-2672.1994.tb01647.x
  • Otero M A, Reyes A, Carrera E & Leon M A (1993). Composition and properties of cane molasses from Northeastern Cuba. International Sugar Journal 95(1129E): 4-8.
  • Parvin S & Nishino N (2010). Succession of lactic acid bacteria in wilted rhodesgrass silage assessed by plate culture and denaturing gradient gel electrophoresis. Grassland Science 56(1): 51-55. https://doi.org/10.1111/j.1744-697X.2009.00173.x
  • Playne M J & McDonald P (1966). The buffering constituents of herbage and of silage. Journal of the Science of Food and Agriculture 17(6): 264-268. https://doi.org/10.1002/jsfa.2740170609
  • Reich L J & Kung Jr L (2010). Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Animal Feed Science and Technology 159(3-4): 105-109. https://doi.org/10.1016/j.anifeedsci.2010.06.002
  • SPSS (1991). Inc. Statistical package for the social sciences (SPSS/PC+). Chicago, IL.
  • Sucu E (2009). The effects of lactic acid bacterial ınoculants on fermentation, aerobic stability and rumen ecology of maize silage. PhD Thesis, Bursa Uludag University, Bursa.
  • Sun L, Jiang Y, Ling Q, Na N, Xu H, Vyas D, ... & Xue Y (2021). Effects of adding pre-fermented fluid prepared from red clover or lucerne on fermentation quality and in vitro digestibility of red clover and lucerne silages. Agriculture 11(5): 454. https://doi.org/10.3390/agriculture11050454
  • Suzuki M & Lund C W (1980). Improved gas-liquid chromatography for simultaneous determination of volatile fatty acids and lactic acid in silage. Journal of Agricultural and Food Chemistry 28(5): 1040-1041. https://doi.org/10.1021/jf60231a023
  • Tao L, Zhou H, Zhang N, Si B, Tu Y, Ma T & Diao Q (2017). Effects of different source additives and wilt conditions on the pH value, aerobic stability, and carbohydrate and protein fractions of alfalfa silage. Animal Science Journal 88(1): 99-106. https://doi.org/10.1111/asj.12599
  • Van Soest P V, Robertson J B & Lewis B A (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74(10): 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  • Xu D, Wang N, Rinne M, Ke W, Weinberg Z G, Da M, ... & Guo X (2021). The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microbial Biotechnology 14(2): 561-576. https://doi.org/10.1111/1751-7915.13623
  • Zhang Y G, Xin H S & Hua J L (2010). Effects of treating whole-plant or chopped rice straw silage with different levels of lactic acid bacteria on silage fermentation and nutritive value for lactating Holsteins. Asian-Australasian Journal of Animal Sciences 23(12): 1601-1607. https://doi.org/10.5713/ajas.2010.10082
Year 2023, , 1050 - 1058, 06.11.2023
https://doi.org/10.15832/ankutbd.1273724

Abstract

References

  • Adesogan A T & Arriola K G (2020). Bacterial inoculants for improving silage quality and animal performance. In: Proceedings of the 82nd Cornell Nutrition Congress, 19-22 October, New York, pp. 42-57.
  • Ali N, Wang S, Zhao J, Dong Z, Li J, Naza M & Shao T (2020). Microbial diversity and fermentation profile of red clover silage inoculated with reconstituted indigenous and exogenous epiphytic microbiota. Bioresource Technology 314: 123606. https://doi.org/10.1016/j.biortech.2020.123606
  • Altınçekiç E (2006). The effect of combination of organic acid-bacterial inoculant on the fermentation, aerobic stability and feed value of maize silage. Master's Thesis, Uludağ University, Bursa, Türkiye.
  • AOAC (2005). Official methods of the association of official analytical chemists, 16th Edn. Arlington, TX: Association of Official Analytical Chemists.
  • Aragón Y A (2012). The use of probiotic strains as silage inoculants. In: E C Rigobelo (Eds.), Probiotics in Animals, Croatia, pp. 1-32. http://dx.doi.org/10.5772/50431
  • Ashbell G, Weinberg Z G, Azrieli A, Hen Y & Horev B (1991). A simple system to study the aerobic determination of silages. Canadian Agricultural Engineering 34: 171-175.
  • Axelsson L (1998). Lactic acid bacteria: classification and physiology. In: S. Salminen & A. von Wright, Lactic Acid Bacteria: Microbiology and Functional Aspects, 2nd (Edn), Revised and Expanded, Marcel Dekker, New York, pp. 1–72. https://doi.org/10.1201/9780824752033.ch1
  • Aydin S S & Denek N (2022). Amount of lactic acid bacteria in fermented natural lactic acid bacteria liquids prepared with varying sucrose inclusion at different incubation periods. Medycyna Weterynaryjna 78(9): 456-460. http://dx.doi.org/10.21521/mw.6686
  • Blajman J E, Vinderola G, Paez R B & Signorini ML (2020). The role of homofermentative and heterofermentative lactic acid bacteria for alfalfa silage: a meta-analysis. Journal of Agricultural Science 158(1-2): 107-118. https://doi.org/10.1017/S0021859620000386
  • Bureenok S, Namihira T, Tamaki M, Mizumachi S, Kawamoto Y & Nakada T (2005a). Fermentative quality of guineagrass silage by using fermented juice of the epiphytic lactic acid bacteria (FJLB) as a silage additive. Asian-Australasian Journal of Animal Sciences 18(6): 807-811. https://doi.org/10.5713/ajas.2005.807
  • Bureenok S, Namihira T, Kawamoto Y & Nakada T (2005b). Additive effects of fermented juice of epiphytic lactic acid bacteria on the fermentative quality of guineagrass (Panicum maximum Jacq.) silage. Grassland Science 51(3): 243-248. https://doi.org/10.1111/j.1744-697X.2005.00032.x
  • Broderick G A & Kang J H (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science 63(1): 64-75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8
  • Can L (2010). Tritikale-Macar fiği hasılına enzim ve laktik asit bakterileri inokulant ilavesinin silaj kalitesi üzerine etkileri, Master's thesis. Namık Kemal University, Tekirdağ.
  • Cao Y, Cai Y, Takahashi T, Yoshida N, Tohno M, Uegaki R, ... & Terada F (2011). Effect of lactic acid bacteria inoculant and beet pulp addition on fermentation characteristics and in vitro ruminal digestion of vegetable residue silage. Journal of Dairy Science, 94(8): 3902-3912. https://doi.org/10.3168/jds.2010-3623
  • Carpintero C M, Henderson A R, & McDonald P (1979). The effect of some pre‐treatments on proteolysis during the ensiling of herbage. Grass and Forage Science 34(4): 311-315. https://doi.org/10.1111/j.1365-2494.1979.tb01483.x
  • Denek N, Can A, Avci M, Aksu T & Durmaz H (2011). The effect of molasses‐based pre‐fermented juice on the fermentation quality of first‐cut lucerne silage. Grass and Forage Science 66(2): 243-250. https://doi.org/10.1111/j.1365-2494.2011.00783.x
  • Ding Z T, Xu D M, Bai J, Li F H, Adesogan A T, Zhang P, ... & Guo X S (2019). Characterization and identification of ferulic acid esterase‐producing Lactobacillus species isolated from Elymus nutans silage and their application in ensiled alfalfa. Journal of Applied Microbiology 127(4): 985-995. https://doi.org/10.1111/jam.14374
  • DLG (Deustsche LandwiethshaftsGesellschaft) (2011). Praxishandbuch Futter-und Substratkonservierung. DLG-Verlags-GmbH, Frankfurt am Main, Germany, pp. 284-327.
  • Doyle N, Mbandlwa P, Kelly W J, Attwood G, Li Y, Ross R P, ... & Leahy S (2019). Use of lactic acid bacteria to reduce methane production in ruminants, a critical review. Frontiers in Microbiology, 2207. https://doi.org/10.3389/fmicb.2019.02207
  • Ellis J L, Bannink A, Hindrichsen I K, Kinley R D, Pellikaan W F, Milora N, & Dijkstra J (2016). The effect of lactic acid bacteria included as a probiotic or silage inoculant on in vitro rumen digestibility, total gas and methane production. Animal Feed Science and Technology 211: 61-74. https://doi.org/10.1016/j.anifeedsci.2015.10.016
  • Fabiszewska A U, Zielińska K J & Wróbel B (2019). Trends in designing microbial silage quality by biotechnological methods using lactic acid bacteria inoculants: a minireview. World Journal of Microbiology and Biotechnology 35(5): 1-8. https://doi.org/10.1007/s11274-019-2649-2
  • Filya İ (2002). The effects of lactic acid bacterial inoculants on the fermentation, aerobic stability and in situ rumen degradability characteristics of maize and sorghum silages. Turkish Journal of Veterinary and Animal Sciences 26(4): 815-823.
  • Filya I, Ashbell G, Hen Y & Weinberg Z G (2000). The effect of bacterial inoculants on the fermentation and aerobic stability of whole crop wheat silage. Animal Feed Science and Technology 88(1-2): 39-46. https://doi.org/10.1016/S0377-8401(00)00214-5
  • Filya I & Sucu E (2010). The effects of lactic acid bacteria on the fermentation, aerobic stability and nutritive value of maize silage. Grass and Forage Science, 65(4): 446-455. https://doi.org/10.1111/j.1365-2494.2010.00763.x
  • Filya I, Sucu E & Karabulut A (2004). The effect of Propionibacterium acidipropionici, with or without Lactobacillus plantarum, on the fermentation and aerobic stability of wheat, sorghum and maize silages. Journal of Applied Microbiology 97(4): 818-826. https://doi.org/10.1111/j.1365-2672.2004.02367.x
  • Goel G, Makkar H P S, & Becker K (2008). Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin‐rich fractions from different plant materials. Journal of Applied Microbiology 105(3): 770-777. https://doi.org/10.1111/j.1365-2672.2008.03818.x
  • Güney F & Ertürk Ö (2020). Determination of the effects of propolis ethanolic extract on some properties of fruit yoghurt during storage. Mustafa Kemal University Journal of Agricultural Sciences 25(2): 145-152. https://doi.org/10.37908/mkutbd.694712
  • Huyen N T, Martinez I & Pellikaan W (2020). Using lactic acid bacteria as silage inoculants or direct-fed microbials to improve in vitro degradability and reduce methane emissions in dairy cows. Agronomy 10(10): 1482. https://doi.org/10.3390/agronomy10101482
  • Jalč D, Laukova A, Pogány Simonová M, Váradyová Z, & Homolka P (2009a). Bacterial inoculant effects on corn silage fermentation and nutrient composition. Asian-Australasian Journal of Animal Sciences 22(7): 977-983. https://doi.org/10.5713/ajas.2009.80282
  • Jalč D, Laukova A, Varadyova Z, Homolka P & Koukolova V (2009b). Effect of inoculated grass silages on rumen fermentation and lipid metabolism in an artificial rumen (RUSITEC). Animal Feed Science and Technology, 151(1-2): 55-64. https://doi.org/10.1016/j.anifeedsci.2008.11.004
  • Jalč D, Váradyová Z, Lauková A, Homolka P, & Jančík F (2009c). Effect of inoculated corn silage on rumen fermentation and lipid metabolism in an artificial rumen (RUSITEC). Animal Feed Science and Technology 152(3-4): 256-266. https://doi.org/10.1016/j.anifeedsci.2009.04.019
  • Kılıç A (1986). Silo yemi (öğretim, öğrenim ve uygulama önerileri). Bilgehan Basımevi, İzmir, pp.327.
  • Kleinschmit D H & Kung Jr L (2006). The effects of Lactobacillus buchneri 40788 and Pediococcus pentosaceus R1094 on the fermentation of corn silage. Journal of Dairy Science 89(10): 3999-4004. https://doi.org/10.3168/jds.S0022-0302(06)72443-2
  • Masuko T, Hariyama Y, Takahashi Y, Cao L M, Goto M & Ohshima M (2002). Effect of addition of fermented juice of epiphytic lactic acid bacteria prepared from timothy (Phleum pratense) and orchardgrass (Dactylis glomerata) on fermentation quality of silages. Journal of Japanese Society of Grassland Science 120-125.
  • McDonald P, Henderson A R, Heron S J E (1991) Plant Enzymes. In: McDonald P, Henderson AR, Heron SJE (Eds.), The Biochemistry of Silage. Abersytwyth, UK, pp.48-80.
  • Menke K H, Raab L, Salewski A, Steingass H, Fritz D, & Schneider W (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science 93(1): 217-222. https://doi.org/10.1017/S0021859600086305
  • Menke K H & Steingass H (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28: 7-55. https://doi.org/10.2508/chikusan.79.483.
  • Muck R E (2013). Recent advances in silage microbiology. Agricultural and Food Science 22(1): 3-15. https://doi.org/10.23986/afsci.6718
  • Müller M & Lier D (1994). Fermentation of fructans by epiphytic lactic acid bacteria. Journal of Applied Microbiology 76(4): 406-411. https://doi.org/10.1111/j.1365-2672.1994.tb01647.x
  • Otero M A, Reyes A, Carrera E & Leon M A (1993). Composition and properties of cane molasses from Northeastern Cuba. International Sugar Journal 95(1129E): 4-8.
  • Parvin S & Nishino N (2010). Succession of lactic acid bacteria in wilted rhodesgrass silage assessed by plate culture and denaturing gradient gel electrophoresis. Grassland Science 56(1): 51-55. https://doi.org/10.1111/j.1744-697X.2009.00173.x
  • Playne M J & McDonald P (1966). The buffering constituents of herbage and of silage. Journal of the Science of Food and Agriculture 17(6): 264-268. https://doi.org/10.1002/jsfa.2740170609
  • Reich L J & Kung Jr L (2010). Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Animal Feed Science and Technology 159(3-4): 105-109. https://doi.org/10.1016/j.anifeedsci.2010.06.002
  • SPSS (1991). Inc. Statistical package for the social sciences (SPSS/PC+). Chicago, IL.
  • Sucu E (2009). The effects of lactic acid bacterial ınoculants on fermentation, aerobic stability and rumen ecology of maize silage. PhD Thesis, Bursa Uludag University, Bursa.
  • Sun L, Jiang Y, Ling Q, Na N, Xu H, Vyas D, ... & Xue Y (2021). Effects of adding pre-fermented fluid prepared from red clover or lucerne on fermentation quality and in vitro digestibility of red clover and lucerne silages. Agriculture 11(5): 454. https://doi.org/10.3390/agriculture11050454
  • Suzuki M & Lund C W (1980). Improved gas-liquid chromatography for simultaneous determination of volatile fatty acids and lactic acid in silage. Journal of Agricultural and Food Chemistry 28(5): 1040-1041. https://doi.org/10.1021/jf60231a023
  • Tao L, Zhou H, Zhang N, Si B, Tu Y, Ma T & Diao Q (2017). Effects of different source additives and wilt conditions on the pH value, aerobic stability, and carbohydrate and protein fractions of alfalfa silage. Animal Science Journal 88(1): 99-106. https://doi.org/10.1111/asj.12599
  • Van Soest P V, Robertson J B & Lewis B A (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74(10): 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  • Xu D, Wang N, Rinne M, Ke W, Weinberg Z G, Da M, ... & Guo X (2021). The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microbial Biotechnology 14(2): 561-576. https://doi.org/10.1111/1751-7915.13623
  • Zhang Y G, Xin H S & Hua J L (2010). Effects of treating whole-plant or chopped rice straw silage with different levels of lactic acid bacteria on silage fermentation and nutritive value for lactating Holsteins. Asian-Australasian Journal of Animal Sciences 23(12): 1601-1607. https://doi.org/10.5713/ajas.2010.10082
There are 51 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Makaleler
Authors

Sadık Serkan Aydın 0000-0002-3252-3944

Nihat Denek 0000-0003-0904-8943

Early Pub Date June 11, 2023
Publication Date November 6, 2023
Submission Date March 30, 2023
Acceptance Date June 9, 2023
Published in Issue Year 2023

Cite

APA Aydın, S. S., & Denek, N. (2023). Effect of Adding Lactic Acid Bacteria to Maize Silage on Nutritive Guality, Fermentation Properties and in Vitro Digestibility. Journal of Agricultural Sciences, 29(4), 1050-1058. https://doi.org/10.15832/ankutbd.1273724

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).