Research Article
BibTex RIS Cite

Effects of PGPB Inoculations on Plant Growth and Quality of Spray Carnation Cultivation in Greenhouse

Year 2024, , 668 - 684, 22.10.2024
https://doi.org/10.15832/ankutbd.1339822

Abstract

In order to achieve the desired quality characteristics and good growth in ornamental plants, various applications are carried out. Recently, the importance of beneficial bacteria, which play an extremely important role in sustainable ecology and are environmentally friendly, has been increasingly recognized. However, the effect of beneficial bacteria, which are not sufficiently applied in ornamental plants as well as in other plant groups, on the growth and quality characteristics of spray carnation variety, which is the most preferred among cut flowers, was investigated in this study. In the greenhouse, the carnation seedlings were treated with Enterobacter ludwigii (KF29A), Pseudomonas fluorescens (KF31B), Paenarthrobacter nitroguaiacolicus (KF3B), Pseudomonas sp. strain VG242B (KF5A), Paenibacillus xylanilyticus (KF63C), Pseudoalteromonas tetraodonis (TV126C) bacteria which have been selected according to nitrogen fixation, phosphate solubilizing, ACC deaminase and siderophore production properties were applied. In the study, in which phenological and morphological observations were made, the effects of bacterial inoculations were tried to be determined. The effects of beneficial bacteria treatments on the number of petals, the number of nodes, the length between the nodes and the weight of the branches in the carnation plant were statistically insignificant; effects on the parameters of bud first bloom time, full bloom time, time from planting to first harvest, number of flower buds and stem length (P<0.01), flower (diameter) width and stem thickness (P<0.05) was found to be statistically significant. First bud bloom, full bloom and time from planting to first harvest are 103.38 days, 103.74 days and 106.28 days (KF63C) respectively, maximum number of flower buds is 4.77 (TV126C), flower diameter is 46.73 mm at the widest (KF63C), the highest stem thickness was 3.39 cm (KF3B) and the highest stem length was 56.33 cm (TV126C). The first flowering time of the buds appeared with a delay of approximately 10-30 days compared to the control with bacterial applications. It is seen that bacterial applications cause an increase on flower stem thickness, flower stem length, flower bud and petal number.

Thanks

This study was produced from EsraYıldız's master's thesis. We thank Flora City in Aksu District of Antalya Province in Turkey for allowing the use of the greenhouse where the study was conducted.

References

  • Ahemad M & Khan M S (2012). Productivity of greengram in tebuconazole– stressed soil, by using a tolerant and plant growth-promoting Bradyrhizobium sp. MRM6 strain. Acta Physiol. Plant 34: 245-254 https://doi.org/10.1007/s11738-011-0823-8
  • AIPH U F (2019). International Statistics Flowers and Plants Yearbook. AIPH University, Urban
  • Ali A, Mehmood T, Hussain R, Bashir A S, Raza S & Najam-ud-Din Ahmad (2014). Investigation of biofertilizers influence on vegetative growth, flower quality, bulb yield and nutrient uptake in Gladiolus (Gladiolus grandiflorus L.) International Journal of Plant, Animal and Environmental Sciences 4(1): 94-99
  • Ali S, Charles T C & Glick B R (2012). Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J. Appl. Microbiol 113: 1139-1144 https://doi.org/10.1111/j.1365-2672.2012.05409.x
  • Alkaç O S, Güneş M & Belgüzar S (2023). Effects of organic acids, chemical treatments and herbal essential oils on the vase life of cut carnation (Dianthus caryophyllus L.) flowers. Emir. J. Food Agric 35(4): 332-341 https://doi:10.9755/ejfa.2023.v35.i4.3002
  • Antoun H (2002). Field and greenhouse trials performed with phosphate solubilizing bacteria and fungi. In: First International Meeting on Microbial Phosphate Solubilization, 16-19 July, Salamanca Spain, pp. 29-31
  • Asri Öktüren F, Demirtaş Işıl E, Güven D, Özkan C & Arı A (2016). Determination of some fertility status of carnation greenhouse soils in Kepez district of Antalya. Journal of Agriculture Faculty of Ege University 53(4): 383 - 388 (in Turkish)
  • Atakan A & Özgönen Özkaya H (2018). The determination of the prevalence of soil-borne fungal disease of carnation greenhouses in Antalya province. Süleyman Demirel University Journal of Natural and Applied Sciences 22(1): 216 - 220 (in Turkish) https://doi:10.19113/sdufbed.04574
  • Bashir M, Asif M, Naveed M, Qadri R WK, Faried N & Baksh A (2019). Pre-harvest exogenous application of bacterial strains to assess the flower and bulb quality of cut Tulip (Tulipa gesneriana L.) cv. Clear Water. Discovery 55(278): 3-80
  • Besemer S T (1980). Carnations. (In: Introduction to Floriculture, Editor: Roy A. Larson) Academic Press. Inc. New York Bhalla R B, Kumar M S & Jain R K (2007). Effect of organic manures and biofertilizers on growth and flowering in standard carnation (Dianthus carypohyllus Linn.). Journal of Ornamental Horticulture 10(4): 229-234
  • Burdman S, Jurkevitch E & Okon Y (2000). Recent advances the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: N S Subba Rao & Y R Dommergues (Eds.), Microbiol Interactions in Agriculture and Forestry Vol II, 10, Science Publishers, Inc. UK, pp. 229-250
  • Carrillo-Castañeda G, Muñoz JJ & Peralta-Videa JR (2005). A spectrophotometric method to determine the siderophore production by strains of fluorescent Pseudomonas in the presence of copper and iron. Microchemical Journal 81(1): 35-40 https://doi.org/10.1016/j.microc.2005.01.018
  • Cornelis P & Matthijs S (2007). Pseudomonas siderophores and their biological significance. Chapter: 9, In: A.Varma & S B Chincholkar (Eds.), Microbial Siderophores, Soil Biology, vol 12. Springer, Berlin, Heidelberg. pp. 193-203 https://doi.org/10.1007/978-3-540-71160-5
  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J & Moënne-Loccoz Y (2009). Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48(5): 505-512 https://doi.org/10.1111/j.1472-765X.2009.02566.x.
  • Çakmakcı R (2009). Promotion of plant growth by ACC deaminase-producing plant growth promoting bacteria under stress conditions. Atatürk Univ., J. of the Agricultural Faculty (current name: Research in Agricultural Sciences) 40(1): 109-125 (in Turkish)
  • Çakmakçı R (2005). Phosphate solubilizing bacteria and their role in plant growth promotion. Selcuk Journal of Agriculture and Food Sciences (formerly name: Journal of Selcuk University Agricultural Faculty) 19(35): 93-108 (in Turkish)
  • Çelik Y, Yarşi G & Özarslandan A (2020). Effects of beneficial bacteria applications on plant yield and resistance mechanisms. JOGHENS Journal of Global Health & Natural Science 3(1): 37-44 (in Turkish)
  • Çığ F, Sönmez F, Nadeem, MA & Sabagh AE (2021). Effect of biochar and PGPR on the growth and nutrients content of einkorn wheat (Triticum monococcum L.) and post-harvest soil properties. Agronomy 11: 2418 https:// doi.org/10.3390/agronomy11122418
  • Çığ F, Sonkurt M, Erman M & Çığ A (2017). The role of beneficial microorganisms in the protection of plants growing in natural landscape areas. Chapter: 35, In: Nature, Environment and Earth Science Current Trends in Science and Landscape Management. Sofia St. Kliment Ohridski University Press Sofia, Bulgaria, ISBN 978-954-07-4338-7. pp. 427-442
  • Dejordjevic M A, Gabriel DW & Rolfe B G (1987). Rhizobium-the refined parasite of legumes. Annu. Rev Phytopathology 25: 145-168 https://doi.org/10.1146/annurev.py.25.090187.001045
  • Düzgünes O, Kesici T, Kavuncu O & Gürbüz F (1987). Research and Experiment Methods (Statistics Methods-II), Publication No: 1021, Textbook: 295, A.Ü. Faculty of Agriculture Publications, Ankara, 381p (in Turkish)
  • Enez B (2022). The effect of bacteria on plant growth. Chapter 1. In: M Kırıcı & E Karakaya (Eds.), From Theory to Practice Agriculture and Livestock Practices in Turkey, Iksad Publications ISBN: 978625-8246-964. Ankara, pp. 3-16 (in Turkish)
  • Erdem B (2013). Microbial siderophores and their biotechnologyical applications. The Black Sea Journal of Sciences 3(8): 77-88 (in Turkish)
  • Erman M, Kotan R, Çakmakci R, Çiğ F, Karagöz K, Sönmez F & El-Sabagh A (2024). Diversity and metabolic potential of culturable N2-fixing and P-solubilizing bacteria from rhizosphere of wild crops in Van Lake basin-Turkey. Pak. J. Bot., 56(2): http://dx.doi.org/10.30848/PJB2024-2(11)
  • Erman M, Kotan R, Çakmakçı R, Çığ F, Karagöz K & Sezen M (2010). Effects of the nitrogen fixing and phosphate solubilizing bacteria isolated from Van Lake Basin on growth and yield characteristics in sugar beet. In: Türkiye IV. Organic Agriculture Symposium, 28 June - 1 July 2010, Erzurum, 326 pp
  • Ferreira M C B, Fernandes M S & Döberenier J (1987). Role of Azospirillum brasilense nitrate reductase in nitrate assimilation by wheat plants. Biol and Fert of Soils 4: 47-53 https://doi.org/10.1007/BF00280350
  • Flores A C, Luna A A E & Portugal V O (2007). Yield and quality enhancement of marigold flowers by ınoculation with Bacillus subtilis and Glomus fasciculatum. Journal of Sustainable Agriculture 31(1): 21-31 https://doi.org/10.1300/J064v31n01_04
  • Glick B R (2020). Introduction to Plant Growth-Promoting Bacteria. In: Beneficial Plant-Bacterial Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-44368-9_1
  • Google Earth (2023). https://earth.google.com/web/search/36.973333333+,+30.81361 1111/@36.9733337,30.81361323,81.0933258a,823.46533885d,35y,-103.24204733h, 44.9 9999825t,0r/data=Cl8aNRIvGcvNgS-WfEJAIZ8pKtFI0D5AKhszNi45NzMzMzMzMzM gLCAzMC44MTM2MTExMTEYASABIiYKJAnYQouByXxCQBFLHMO97ntCQBnY WJb5BNI-QCFoO5 ujgM8-QA (Aces date: 13.03.2023)
  • Gunjal A B & Glick B R (2023). Plant growth-promoting bacteria (PGPB) in horticulture. Proceedings of the Indian National Science Academy (2023) https://doi.org/10.1007/s43538-023-00224-3
  • Gül A, Kıdoğlu F, Tüzel Y & Tüzel İ H (2008). Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum L.) growing in perlite. Spanish Journal of Agricultural Research 6(3): 422-429 https://doi.org/10.5424/sjar/2008063-335
  • Güneş M & Babadağ G E (2022). Current status of businesses, problems and solutions of retail ornamental plants of Konya. Gaziosmanpasa Journal of Scientific Research 11(3): 137-146 (in Turkish)
  • Karadeniz T, Güler E, Koçoğlu S T, Kuru Berk S & Bak T (2020). Carnation (Dianthus caryophyllus) growing in greenhouse conditions in Bolu. IJAAES International Journal of Anatolia Agricultural Engineering 2: 11-15 (in Turkish)
  • Keçecioğlu O (2001). Studies on importance of western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and development of chemical control on carnation in greenhouse conditions in Antalya. Unpublished Msc Thesis, Ege University, Graduate School of Natural and Applied Sciences, İzmir, 54 pp (in Turkish)
  • Keçecioğlu O & Madanlar N (2002). The effects of some insecticides on western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on carnation in greenhouses. Turkish Journal of Entomology 26(2): 147 - 154 (in Turkish)
  • Kınık E (2014). Effects of auxin, mycorrhiza and plant growth promoting bacteria treatments on propagation of some woody ornamental plants by cutting. Unpublished Msc Thesis, Ondokuz Mayıs University Graduate School of Natural and Applied Sciences, Samsun, 107 p. (in Turkish)
  • Kloepper J W, Leong J, Teintze M & Scrotch M N (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886 https://doi.org/10.1038/286885a0
  • Kumar T S (2021). Evaluation of potential biocontrol agents on root knot nematode meloidogyne incognita management in carnation (Dianthus caryophyllus L.). International Journal of Current Microbiology and Applied Sciences 10(02): 1786-1790 https://doi.org/10.20546/ijcmas.2021.1002.211
  • Manoly N D & Nasr A A (2008). Response of Dahlia pinnata plants to biofertilizer types. Egyptian Journal of Experimental Biology 4: 87-91
  • Mayak S, Tirosh T & Glick BR (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42 (6): 565-572 http://doi.org/ 10.1016/j.plaphy.2004.05.009
  • McCain A H (2003). Disease of Carnation (Dianthus caryophylius L.). https://www.apsnet.org/edcenter/resources/commonnames/Pages/Carnation.aspx (Access date: 22.02.2024)
  • Meena P & Rai A K (2017). Effect of PGPR on morphological properties of different varieties of wheat (Triticum aestivum). The Pharma Innovation Journal 6(7): 271–277
  • Mishra R K, Prakash O, Alam M & Dikshit A (2010). Influence of plant growth promoting rhizobacteria (PGPR) on the productivity of Pelargonium graveolens L. Herit. Recent Res Sci Technol 2(5): 53-57
  • Montesinos E, Bonaterra A, Badosa E, Francãç J, Alemany J, Llorente I & Moragrega C (2002). Plant-microbe interactions and the new biotechnological methods of plant disease control. Int Microbiol 5 (4): 169-175 https://doi.org/10.1007/s10123-002-0085-9.
  • Nordstedt N P, Chapin L J, Taylor C G & Jones M L (2020). Identification of Pseudomonas spp. that increase ornamental crop quality during abiotic stress. Frontiers in Plant Science 10: 1754 https://doi.org/10.3389/fpls.2019.01754
  • Pandey A, Durgapal A, Joshi M & Palni L M S (1999). Influence of Pseudomonas corrugata inoculation on root colonization and growth promotion of two important hill crops. Microbiol Res 15(3): 259-266 https://doi.org/10.1016/S0944-5013(99)80023-8
  • Pansuriya P B, Varu D K & Viradia R R (2018). Effect of biostimulants and biofertilizers on growth, flowering and quality of gladiolus (Gladiolus grandiflorus L.) cv. American Beauty under greenhouse conditions. International Journal of Chemical Studies 6 (2): 2191-2196
  • Ram R L, Maji C & Bindroo B B (2013). Role of PGPR in different crops-an overview. Indian Journal of Sericulture 52(1): 1-13
  • Seshadri S, Muthukumarasamy R, Lakshminarasimhan C & Lgnacimuthu S (2000). Solubilization of inorganic phosphates by Azospirillum halopraeferans. Current Science 79(5): 565-567
  • Seymen M, Kurtar E S, Dursun & Türkmen Ö (2019). In Sustainable agriculture: assessment of plant growth promoting rhizobacteria in cucurbitaceous vegetable crops. In: DK Maheshwari & S Dheeman (Eds.), Springer Nature Switzerland AG 2019 Field Crops: Sustainable Management by PGPR, Sustainable Development and Biodiversity 23, pp. 69-103. https://doi.org/10.1007/978-3-030-30926-8_4
  • Sezen I & Külekçi A E (2020). Effects of plant growth promoting bacteria on the growth parameters of ornamental plants. Journal of Agricultural Faculty of Bursa Uludag University 34 (special issue): 9-20 (in Turkish)
  • Sezen I, Kaymak H Ç, Aytatlı B, Dönmez M F & Ercişli S (2014). Inoculations with plant growth promoting rhizobacteria (PGPR) stimulate adventitious root formation on semi-hardwood stem cuttings of Ficus benjamina L. Propagation of Ornamental Plants 14(4): 152-157
  • Sonkurt M & Çığ F (2019). The effect of plant growth-promoting bacteria on the development, yield and yield components of bread (Triticum aestivum L.) and durum (Triticum durum) wheats. Applied Ecology and Environmental Research 17(2): 3877-3896 http://dx.doi.org/10.15666/aeer/1702_38773896
  • Söğüt S & Çığ F (2019). Determination of the effect of plant growth promoting bacteria on wheat (Triticum aestivum L.) development under salinity stress conditions. Applied Ecology and Environmental Research 17(1): 1129-1141 http://dx.doi.org/10.15666/aeer/1701_11291141
  • Şevik M A & Saruhan İ (2010). Plant protection problems in carnation (Dianthus caryophyllus L.). Turkish Journal of Scientific Reviews 3(2): 33-41 (in Turkish)
  • Tariq U, Riaz A, Jaskani M J & Zahir Z A (2016). Screening of PGPR isolates for plant growth promotion of Rosa damascena Mill. International Journal of Agriculture and Biology 18(5): 997-1003 https://doi.org/10.17957/IJAB/15.0200
  • Tozlu E, Karagöz K, Babagil G E, Dizikısa T & Kotan R (2012). Effect of some plant growth promoting bacteria on yield, yield components of dry bean (Phaseolus vulgaris L. cv. Aras 98). Atatürk Univ., J. of the Agricultural Faculty 43: 101–106
  • TUİK (2019). Bitkisel üretim İstatistikleri. Türkiye İstatistik Kurumu. (https://www.tuik.gov.tr/Bulten) https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249 (Access date: 15.10.2022)
  • TUİK (2020). Bitkisel üretim İstatistikleri. Türkiye İstatistik Kurumu. (https://www.tuik.gov.tr/Bulten) https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249 (Access date: 15.10.2022)
  • TUİK (2021). Bitkisel üretim İstatistikleri. Türkiye İstatistik Kurumu. (https://www.tuik.gov.tr) https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249 (Access date: 14.01.2023)
  • TUİK (2022). Bitkisel üretim İstatistikleri. Türkiye İstatistik Kurumu. (https://www.tuik.gov.tr) https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249. (Access date: 20.03.2023)
  • TUİK (2023). Türkiye Süs Bitkileri Üretim Verileri. Türkiye İstatistik Kurumu. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 (Acces date: 16.02.2023)
  • Tunç İ & Göçmen H (1995). Notes on two greenhouse pests, Polyphagotarsonemus latus (Banks) (Acrina, Tarsonemidae) and Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae), found in Antalya Turkish Journal of Entomology 19(2): 101-109
  • Wang C, Knill E, Glicl B R & Defago G (2000). An ACC deaminese gene improves the growth promoting and diseasefluor suppressive capacities of Pseudomonas escens strain CHAO. In: Fifth International PGPR Workshop, 29 October November, 2000, CordobaArgentina.3
  • Wani P A & Khan M S (2010). Bacillus species enhance growth parameters of chickpea (Cicer arietimum L.) in chromium stressed soils. Food Chem. Toxicol 48: 3262-3267. https://doi.org/10.1016/j.fct.2010.08.035
  • Whealy A & Larson R A (1992). Carnations. Introduction to Floriculture. Academic Press, New York, 292 pp Zaman S, Özdemir Ü & Sever R (2011). Production of decorative plants and geographical conditions in Antalya. Eastern Geographical Review 12(18): 301-326 (in Turkish)
  • Zulueta-Rodriguez R, Cordoba-Matson M V, Hernandez-Montiel L G, MurilloAmador B, Rueda-Puente E & Lara L (2014). Effect of Pseudomonas putida on growth and anthocyanin pigment in two poinsettia (Euphorbia pulcherrima) cultivars. The 19 Scientific World Journal, Volume 2014, Article ID 810192, 6 pages. https://doi.org/10.1155/2014/810192
Year 2024, , 668 - 684, 22.10.2024
https://doi.org/10.15832/ankutbd.1339822

Abstract

References

  • Ahemad M & Khan M S (2012). Productivity of greengram in tebuconazole– stressed soil, by using a tolerant and plant growth-promoting Bradyrhizobium sp. MRM6 strain. Acta Physiol. Plant 34: 245-254 https://doi.org/10.1007/s11738-011-0823-8
  • AIPH U F (2019). International Statistics Flowers and Plants Yearbook. AIPH University, Urban
  • Ali A, Mehmood T, Hussain R, Bashir A S, Raza S & Najam-ud-Din Ahmad (2014). Investigation of biofertilizers influence on vegetative growth, flower quality, bulb yield and nutrient uptake in Gladiolus (Gladiolus grandiflorus L.) International Journal of Plant, Animal and Environmental Sciences 4(1): 94-99
  • Ali S, Charles T C & Glick B R (2012). Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J. Appl. Microbiol 113: 1139-1144 https://doi.org/10.1111/j.1365-2672.2012.05409.x
  • Alkaç O S, Güneş M & Belgüzar S (2023). Effects of organic acids, chemical treatments and herbal essential oils on the vase life of cut carnation (Dianthus caryophyllus L.) flowers. Emir. J. Food Agric 35(4): 332-341 https://doi:10.9755/ejfa.2023.v35.i4.3002
  • Antoun H (2002). Field and greenhouse trials performed with phosphate solubilizing bacteria and fungi. In: First International Meeting on Microbial Phosphate Solubilization, 16-19 July, Salamanca Spain, pp. 29-31
  • Asri Öktüren F, Demirtaş Işıl E, Güven D, Özkan C & Arı A (2016). Determination of some fertility status of carnation greenhouse soils in Kepez district of Antalya. Journal of Agriculture Faculty of Ege University 53(4): 383 - 388 (in Turkish)
  • Atakan A & Özgönen Özkaya H (2018). The determination of the prevalence of soil-borne fungal disease of carnation greenhouses in Antalya province. Süleyman Demirel University Journal of Natural and Applied Sciences 22(1): 216 - 220 (in Turkish) https://doi:10.19113/sdufbed.04574
  • Bashir M, Asif M, Naveed M, Qadri R WK, Faried N & Baksh A (2019). Pre-harvest exogenous application of bacterial strains to assess the flower and bulb quality of cut Tulip (Tulipa gesneriana L.) cv. Clear Water. Discovery 55(278): 3-80
  • Besemer S T (1980). Carnations. (In: Introduction to Floriculture, Editor: Roy A. Larson) Academic Press. Inc. New York Bhalla R B, Kumar M S & Jain R K (2007). Effect of organic manures and biofertilizers on growth and flowering in standard carnation (Dianthus carypohyllus Linn.). Journal of Ornamental Horticulture 10(4): 229-234
  • Burdman S, Jurkevitch E & Okon Y (2000). Recent advances the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: N S Subba Rao & Y R Dommergues (Eds.), Microbiol Interactions in Agriculture and Forestry Vol II, 10, Science Publishers, Inc. UK, pp. 229-250
  • Carrillo-Castañeda G, Muñoz JJ & Peralta-Videa JR (2005). A spectrophotometric method to determine the siderophore production by strains of fluorescent Pseudomonas in the presence of copper and iron. Microchemical Journal 81(1): 35-40 https://doi.org/10.1016/j.microc.2005.01.018
  • Cornelis P & Matthijs S (2007). Pseudomonas siderophores and their biological significance. Chapter: 9, In: A.Varma & S B Chincholkar (Eds.), Microbial Siderophores, Soil Biology, vol 12. Springer, Berlin, Heidelberg. pp. 193-203 https://doi.org/10.1007/978-3-540-71160-5
  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J & Moënne-Loccoz Y (2009). Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48(5): 505-512 https://doi.org/10.1111/j.1472-765X.2009.02566.x.
  • Çakmakcı R (2009). Promotion of plant growth by ACC deaminase-producing plant growth promoting bacteria under stress conditions. Atatürk Univ., J. of the Agricultural Faculty (current name: Research in Agricultural Sciences) 40(1): 109-125 (in Turkish)
  • Çakmakçı R (2005). Phosphate solubilizing bacteria and their role in plant growth promotion. Selcuk Journal of Agriculture and Food Sciences (formerly name: Journal of Selcuk University Agricultural Faculty) 19(35): 93-108 (in Turkish)
  • Çelik Y, Yarşi G & Özarslandan A (2020). Effects of beneficial bacteria applications on plant yield and resistance mechanisms. JOGHENS Journal of Global Health & Natural Science 3(1): 37-44 (in Turkish)
  • Çığ F, Sönmez F, Nadeem, MA & Sabagh AE (2021). Effect of biochar and PGPR on the growth and nutrients content of einkorn wheat (Triticum monococcum L.) and post-harvest soil properties. Agronomy 11: 2418 https:// doi.org/10.3390/agronomy11122418
  • Çığ F, Sonkurt M, Erman M & Çığ A (2017). The role of beneficial microorganisms in the protection of plants growing in natural landscape areas. Chapter: 35, In: Nature, Environment and Earth Science Current Trends in Science and Landscape Management. Sofia St. Kliment Ohridski University Press Sofia, Bulgaria, ISBN 978-954-07-4338-7. pp. 427-442
  • Dejordjevic M A, Gabriel DW & Rolfe B G (1987). Rhizobium-the refined parasite of legumes. Annu. Rev Phytopathology 25: 145-168 https://doi.org/10.1146/annurev.py.25.090187.001045
  • Düzgünes O, Kesici T, Kavuncu O & Gürbüz F (1987). Research and Experiment Methods (Statistics Methods-II), Publication No: 1021, Textbook: 295, A.Ü. Faculty of Agriculture Publications, Ankara, 381p (in Turkish)
  • Enez B (2022). The effect of bacteria on plant growth. Chapter 1. In: M Kırıcı & E Karakaya (Eds.), From Theory to Practice Agriculture and Livestock Practices in Turkey, Iksad Publications ISBN: 978625-8246-964. Ankara, pp. 3-16 (in Turkish)
  • Erdem B (2013). Microbial siderophores and their biotechnologyical applications. The Black Sea Journal of Sciences 3(8): 77-88 (in Turkish)
  • Erman M, Kotan R, Çakmakci R, Çiğ F, Karagöz K, Sönmez F & El-Sabagh A (2024). Diversity and metabolic potential of culturable N2-fixing and P-solubilizing bacteria from rhizosphere of wild crops in Van Lake basin-Turkey. Pak. J. Bot., 56(2): http://dx.doi.org/10.30848/PJB2024-2(11)
  • Erman M, Kotan R, Çakmakçı R, Çığ F, Karagöz K & Sezen M (2010). Effects of the nitrogen fixing and phosphate solubilizing bacteria isolated from Van Lake Basin on growth and yield characteristics in sugar beet. In: Türkiye IV. Organic Agriculture Symposium, 28 June - 1 July 2010, Erzurum, 326 pp
  • Ferreira M C B, Fernandes M S & Döberenier J (1987). Role of Azospirillum brasilense nitrate reductase in nitrate assimilation by wheat plants. Biol and Fert of Soils 4: 47-53 https://doi.org/10.1007/BF00280350
  • Flores A C, Luna A A E & Portugal V O (2007). Yield and quality enhancement of marigold flowers by ınoculation with Bacillus subtilis and Glomus fasciculatum. Journal of Sustainable Agriculture 31(1): 21-31 https://doi.org/10.1300/J064v31n01_04
  • Glick B R (2020). Introduction to Plant Growth-Promoting Bacteria. In: Beneficial Plant-Bacterial Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-44368-9_1
  • Google Earth (2023). https://earth.google.com/web/search/36.973333333+,+30.81361 1111/@36.9733337,30.81361323,81.0933258a,823.46533885d,35y,-103.24204733h, 44.9 9999825t,0r/data=Cl8aNRIvGcvNgS-WfEJAIZ8pKtFI0D5AKhszNi45NzMzMzMzMzM gLCAzMC44MTM2MTExMTEYASABIiYKJAnYQouByXxCQBFLHMO97ntCQBnY WJb5BNI-QCFoO5 ujgM8-QA (Aces date: 13.03.2023)
  • Gunjal A B & Glick B R (2023). Plant growth-promoting bacteria (PGPB) in horticulture. Proceedings of the Indian National Science Academy (2023) https://doi.org/10.1007/s43538-023-00224-3
  • Gül A, Kıdoğlu F, Tüzel Y & Tüzel İ H (2008). Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum L.) growing in perlite. Spanish Journal of Agricultural Research 6(3): 422-429 https://doi.org/10.5424/sjar/2008063-335
  • Güneş M & Babadağ G E (2022). Current status of businesses, problems and solutions of retail ornamental plants of Konya. Gaziosmanpasa Journal of Scientific Research 11(3): 137-146 (in Turkish)
  • Karadeniz T, Güler E, Koçoğlu S T, Kuru Berk S & Bak T (2020). Carnation (Dianthus caryophyllus) growing in greenhouse conditions in Bolu. IJAAES International Journal of Anatolia Agricultural Engineering 2: 11-15 (in Turkish)
  • Keçecioğlu O (2001). Studies on importance of western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and development of chemical control on carnation in greenhouse conditions in Antalya. Unpublished Msc Thesis, Ege University, Graduate School of Natural and Applied Sciences, İzmir, 54 pp (in Turkish)
  • Keçecioğlu O & Madanlar N (2002). The effects of some insecticides on western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on carnation in greenhouses. Turkish Journal of Entomology 26(2): 147 - 154 (in Turkish)
  • Kınık E (2014). Effects of auxin, mycorrhiza and plant growth promoting bacteria treatments on propagation of some woody ornamental plants by cutting. Unpublished Msc Thesis, Ondokuz Mayıs University Graduate School of Natural and Applied Sciences, Samsun, 107 p. (in Turkish)
  • Kloepper J W, Leong J, Teintze M & Scrotch M N (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886 https://doi.org/10.1038/286885a0
  • Kumar T S (2021). Evaluation of potential biocontrol agents on root knot nematode meloidogyne incognita management in carnation (Dianthus caryophyllus L.). International Journal of Current Microbiology and Applied Sciences 10(02): 1786-1790 https://doi.org/10.20546/ijcmas.2021.1002.211
  • Manoly N D & Nasr A A (2008). Response of Dahlia pinnata plants to biofertilizer types. Egyptian Journal of Experimental Biology 4: 87-91
  • Mayak S, Tirosh T & Glick BR (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42 (6): 565-572 http://doi.org/ 10.1016/j.plaphy.2004.05.009
  • McCain A H (2003). Disease of Carnation (Dianthus caryophylius L.). https://www.apsnet.org/edcenter/resources/commonnames/Pages/Carnation.aspx (Access date: 22.02.2024)
  • Meena P & Rai A K (2017). Effect of PGPR on morphological properties of different varieties of wheat (Triticum aestivum). The Pharma Innovation Journal 6(7): 271–277
  • Mishra R K, Prakash O, Alam M & Dikshit A (2010). Influence of plant growth promoting rhizobacteria (PGPR) on the productivity of Pelargonium graveolens L. Herit. Recent Res Sci Technol 2(5): 53-57
  • Montesinos E, Bonaterra A, Badosa E, Francãç J, Alemany J, Llorente I & Moragrega C (2002). Plant-microbe interactions and the new biotechnological methods of plant disease control. Int Microbiol 5 (4): 169-175 https://doi.org/10.1007/s10123-002-0085-9.
  • Nordstedt N P, Chapin L J, Taylor C G & Jones M L (2020). Identification of Pseudomonas spp. that increase ornamental crop quality during abiotic stress. Frontiers in Plant Science 10: 1754 https://doi.org/10.3389/fpls.2019.01754
  • Pandey A, Durgapal A, Joshi M & Palni L M S (1999). Influence of Pseudomonas corrugata inoculation on root colonization and growth promotion of two important hill crops. Microbiol Res 15(3): 259-266 https://doi.org/10.1016/S0944-5013(99)80023-8
  • Pansuriya P B, Varu D K & Viradia R R (2018). Effect of biostimulants and biofertilizers on growth, flowering and quality of gladiolus (Gladiolus grandiflorus L.) cv. American Beauty under greenhouse conditions. International Journal of Chemical Studies 6 (2): 2191-2196
  • Ram R L, Maji C & Bindroo B B (2013). Role of PGPR in different crops-an overview. Indian Journal of Sericulture 52(1): 1-13
  • Seshadri S, Muthukumarasamy R, Lakshminarasimhan C & Lgnacimuthu S (2000). Solubilization of inorganic phosphates by Azospirillum halopraeferans. Current Science 79(5): 565-567
  • Seymen M, Kurtar E S, Dursun & Türkmen Ö (2019). In Sustainable agriculture: assessment of plant growth promoting rhizobacteria in cucurbitaceous vegetable crops. In: DK Maheshwari & S Dheeman (Eds.), Springer Nature Switzerland AG 2019 Field Crops: Sustainable Management by PGPR, Sustainable Development and Biodiversity 23, pp. 69-103. https://doi.org/10.1007/978-3-030-30926-8_4
  • Sezen I & Külekçi A E (2020). Effects of plant growth promoting bacteria on the growth parameters of ornamental plants. Journal of Agricultural Faculty of Bursa Uludag University 34 (special issue): 9-20 (in Turkish)
  • Sezen I, Kaymak H Ç, Aytatlı B, Dönmez M F & Ercişli S (2014). Inoculations with plant growth promoting rhizobacteria (PGPR) stimulate adventitious root formation on semi-hardwood stem cuttings of Ficus benjamina L. Propagation of Ornamental Plants 14(4): 152-157
  • Sonkurt M & Çığ F (2019). The effect of plant growth-promoting bacteria on the development, yield and yield components of bread (Triticum aestivum L.) and durum (Triticum durum) wheats. Applied Ecology and Environmental Research 17(2): 3877-3896 http://dx.doi.org/10.15666/aeer/1702_38773896
  • Söğüt S & Çığ F (2019). Determination of the effect of plant growth promoting bacteria on wheat (Triticum aestivum L.) development under salinity stress conditions. Applied Ecology and Environmental Research 17(1): 1129-1141 http://dx.doi.org/10.15666/aeer/1701_11291141
  • Şevik M A & Saruhan İ (2010). Plant protection problems in carnation (Dianthus caryophyllus L.). Turkish Journal of Scientific Reviews 3(2): 33-41 (in Turkish)
  • Tariq U, Riaz A, Jaskani M J & Zahir Z A (2016). Screening of PGPR isolates for plant growth promotion of Rosa damascena Mill. International Journal of Agriculture and Biology 18(5): 997-1003 https://doi.org/10.17957/IJAB/15.0200
  • Tozlu E, Karagöz K, Babagil G E, Dizikısa T & Kotan R (2012). Effect of some plant growth promoting bacteria on yield, yield components of dry bean (Phaseolus vulgaris L. cv. Aras 98). Atatürk Univ., J. of the Agricultural Faculty 43: 101–106
  • TUİK (2019). Bitkisel üretim İstatistikleri. Türkiye İstatistik Kurumu. (https://www.tuik.gov.tr/Bulten) https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249 (Access date: 15.10.2022)
  • TUİK (2020). Bitkisel üretim İstatistikleri. Türkiye İstatistik Kurumu. (https://www.tuik.gov.tr/Bulten) https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249 (Access date: 15.10.2022)
  • TUİK (2021). Bitkisel üretim İstatistikleri. Türkiye İstatistik Kurumu. (https://www.tuik.gov.tr) https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249 (Access date: 14.01.2023)
  • TUİK (2022). Bitkisel üretim İstatistikleri. Türkiye İstatistik Kurumu. (https://www.tuik.gov.tr) https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249. (Access date: 20.03.2023)
  • TUİK (2023). Türkiye Süs Bitkileri Üretim Verileri. Türkiye İstatistik Kurumu. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 (Acces date: 16.02.2023)
  • Tunç İ & Göçmen H (1995). Notes on two greenhouse pests, Polyphagotarsonemus latus (Banks) (Acrina, Tarsonemidae) and Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae), found in Antalya Turkish Journal of Entomology 19(2): 101-109
  • Wang C, Knill E, Glicl B R & Defago G (2000). An ACC deaminese gene improves the growth promoting and diseasefluor suppressive capacities of Pseudomonas escens strain CHAO. In: Fifth International PGPR Workshop, 29 October November, 2000, CordobaArgentina.3
  • Wani P A & Khan M S (2010). Bacillus species enhance growth parameters of chickpea (Cicer arietimum L.) in chromium stressed soils. Food Chem. Toxicol 48: 3262-3267. https://doi.org/10.1016/j.fct.2010.08.035
  • Whealy A & Larson R A (1992). Carnations. Introduction to Floriculture. Academic Press, New York, 292 pp Zaman S, Özdemir Ü & Sever R (2011). Production of decorative plants and geographical conditions in Antalya. Eastern Geographical Review 12(18): 301-326 (in Turkish)
  • Zulueta-Rodriguez R, Cordoba-Matson M V, Hernandez-Montiel L G, MurilloAmador B, Rueda-Puente E & Lara L (2014). Effect of Pseudomonas putida on growth and anthocyanin pigment in two poinsettia (Euphorbia pulcherrima) cultivars. The 19 Scientific World Journal, Volume 2014, Article ID 810192, 6 pages. https://doi.org/10.1155/2014/810192
There are 67 citations in total.

Details

Primary Language English
Subjects Green-House Growing and Treatment
Journal Section Makaleler
Authors

Esra Yıldız Taşkesen This is me 0000-0002-3521-9841

Arzu Çığ 0000-0002-2142-5986

Nalan Türkoğlu 0000-0003-2639-360X

Publication Date October 22, 2024
Submission Date August 8, 2023
Acceptance Date April 24, 2024
Published in Issue Year 2024

Cite

APA Yıldız Taşkesen, E., Çığ, A., & Türkoğlu, N. (2024). Effects of PGPB Inoculations on Plant Growth and Quality of Spray Carnation Cultivation in Greenhouse. Journal of Agricultural Sciences, 30(4), 668-684. https://doi.org/10.15832/ankutbd.1339822

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).