Improvement of Ex vitro Rooting and Acclimatization to Increase Micropropagation Efficiency of Aronia (Aronia mitschurinii)
Year 2026,
Volume: 32 Issue: 1, 81 - 92, 20.01.2026
Sema Coşkun
Hatice Dumanoğlu
,
Gölge Sarıkamış
,
Rabia Albayrak Delialioğlu
,
Zahide Kocabas
Abstract
In this study, the objective was to establish an easier and more effective rooting and acclimatization protocol for the micropropagation of aronia compared to common in vitro and ex vitro methods. The effects of indole3-butyric acid (IBA) applied at concentrations of 0, 25, 50, 100, 200, 500, 1000 and 1500 mg/L on ex vitro rooting and acclimatization of 'Viking' and 'Nero' aronia cultivars (Aronia mitschurinii) were investigated. The microcuttings were quick-dipped in IBA solution and then placed in floating perlite. They were incubated for 4 weeks at 25±2 °C under a 16 hour light (35 μmol∙m-2∙s-1) and 8-hour dark photoperiod. The survival percentage of microcuttings decreased significantly (43.0-70.2%) at high concentrations of IBA including 500 mg/L and above, particularly in the ‘Viking’ cultivar. A second experiment was performed at lower concentrations including 25, 50, 100 and 200 mg/L IBA treatments and the control. The survival percentage of microcuttings was 97.7% and 94.6% and the rooting and acclimatization percentages of surviving microcuttings were 99.7% and 99.3% for ‘Viking’ and ‘Nero’ cultivars respectively without any significant difference among IBA treatments. To summarise, the experiment yielded successful results in the ex vitro rooting and simultaneous acclimatization of aronia microcuttings. These processes were achieved through the utilisation of a floating perlite bed, with and without low concentration of indole-3-butyric acid (IBA).
Project Number
This research received no funding
References
-
Alizadeh S & Dumanoğlu H (2022). The effects of zinc oxide nanoparticles loaded with IAA and IBA on in vitro rooting of apple microcuttings. Turkish Journal of Agriculture and Forestry 46: 306-317. https://doi.org/10.55730/1300-011X.3004
-
Almokar H M M & Pırlak L (2018). Propagation of aronia (Aronia melanocarpa) with tissue culture. Selçuk Journal of Agriculture and Food Sciences 32(3): 549-558. https://doi.org/10.15316/SJAFS.2018.136
-
Aygun A & Dumanoglu H (2015). In vitro shoot proliferation and in vitro and ex vitro root formation of Pyrus elaeagrifolia Pallas. Frontiers in Plant Science 6: 225. https://doi.org/10. 3389/ fpls. 2015. 00225
-
Bhojwani S S & Dantu P K (2013). Plant Tissue Culture: An Introductory Text. Springer 301, New Delhi. https://doi.org/10.1007/978-81
322-1026-9
-
Borsai O, Clapa D, Fira A, Harta M, Dumitraş A, Pop R & Pamfil D (2017). The effect of gelling agent on the micropropagation of common lilac (Syringa vulgaris L.). Agricultura 103(3-4): 63-71. https://doi.org/10.15835/agrisp.v103i3-4.12831
-
Borsai O, Clapa D, Fira A, Hârța M, Szabo K, Dumitraș A & Pamfil D C (2021). In vitro propagation of Aronia melanocarpa (Michx.) Elliott.
Acta Horticulturae 1308: 213-222. https://doi.org/10.17660/ActaHortic.2021.1308.30
-
Brand M H & Cullina W G (1992). Micropropagation of red and black chokeberry (Aronia spp.). HortScience (27)1: 81.
https://doi.org/10.21273/HORTSCI.27.1.81
-
Brand MH (2017). Propagation of Aronia by seed, cuttings, tissue culture and grafting. Acta Horticulturae 1174: 197-204.
https://doi.org/10.17660/ActaHortic.2017.1174.41
-
Brandova P, Sedlák J & Paprštein F (2019). Micropropagation of rowan and chokeberry. Vědecké Práce Ovocnářské 26: 29-36.
-
Carpenter W J & Cornell J A (1992). Auxin application duration and concentration govern rooting of hibiscus stem cuttings. Journal of the
American Society for Horticultural Science 117(1): 68-74. https://doi.org/10.21273/JASHS.117.1.68
-
Clapa D, Fira A & Joshee N (2013a). An efficient ex vitro rooting and acclimatization method for horticultural plants using float hydroculture. HortScience 48(9): 1159-1167. https://doi.org/10.21273/HORTSCI.48.9.1159
-
Clapa D, Fira A, Simu M & Horga V C (2013b). In vitro propagation of Gisela 5 cherry rootstock. Scientific Papers of the Research Institute for Fruit Growing 29: 100-105
-
Clapa D, Fira A, Simu M, Vasu L B & Buduroi D (2014). Improved in vitro propagation of Paulownia elongata, P. fortunei and its interspecific hybrid P. elongate x P. fortunei. Bulletin UASVM Horticulture 71(1): 6-14
-
Clapa D, Fira A & Simu M (2015). The role of rooting substrate in blackberry ex vitro rooting and acclimatization stage. ProEnvironment 8:
280-284
-
Clapa D, Fira A, Simu M, Harta M. & Sisea C (2016). The elaboration of a practical protocol for the micropropagation of several apple
rootstock varieties. Bulletin UASVM Horticulture 73(2): 226-228
-
Çelebi Toprak F & Alan A R (2020). A successful micropropagation protocol for three aronia (Aronia melanocarpa) cultivars. Acta Horticulturae 1285: 173-176. https://doi.org/10.17660/ActaHortic.2020.1285.27
-
Debergh P C & Maene L J (1981). A scheme for commercial propagation of ornamental plants by tissue culture. Scientia Horticulturae 14(4):
335-345. https://doi.org/10.1016/0304-4238(81)90047-9
-
Dragomir D, Hoza D & Oltenacu V C (2023). Study Regarding the behavior of three chokeberry cultivars (Aronia melanocarpa) cultivated in organic system. Scientific Papers Series B, Horticulture LXVII: (2): 71-15.
-
Fira A, Clapa D & Simu M (2014). Studies regarding the micropropagation of some blackberry cultivars. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture 71(1): 29-37.
-
Fira A, Simu M, Vlaicu B & Clapa D (2015). Aspects regarding the in vitro propagation of ‘Royal Gala’ apple cultivar. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture 72(2): 342-349
Fira A, Joshee N, Cristea V, Simu M, Hârța M, Pamfil D & Clapa D (2016). Optimization of micropropagation protocol for goji berry (Lycium barbarum L.). Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture 73(2): 141-150.
https://doi.org/10.15835/buasvmcn-hort:12177
-
George E F & Debergh P C (2008). Micropropagation: uses and methods In: Plant Propagation by Tissue Culture 3rd Edition Volume 1. The Background. George E F, Hall MA, De Klerk G J (eds), Springer 29-64, Dordrecht, The Netherlands.
-
Green B V, Aroh B, Fiorellino N M, Ristvey A G & Volkis V V (2023). Effect of cultural management and plant age on the yield, °brix, and antioxidant content of Aronia mitschurinii grown in Maryland. ACS Omega 8 (4): 4060-4071. https://doi.org/10.1021/acsomega.2c06988
-
Hartmann H T, Kester D E, Davies Jr F T & Geneve R L (2011). Plant Propagation: Principles and Practices (8th Edition). Prentice-Hall, 915,
Boston
-
Hazarika B N, Teixeira da Silva J A & Talukdar A (2006). Effective acclimatization of in vitro cultured plants: methods, physiology and genetics, In: Floriculture, Ornamental and Plant Biotechnology, Vol. II. Teixeira da Silva, J.A. (ed), Global Science Books, 427-438, UK
-
Imrak B, Kafkas E & Tufan M (2021). The investigation of the impact of different plant growth regulators on micropropagation of aronia (Aronia melanocarpa (Michx) Elliot). II. International Agricultural, Biological and Life Science Conference, AGBIOL 2021. 1-3
-
September 2021, Edirne, Turkey
Ionela V, Popescu A, Hoza D, Isac V & Oprea M I (2022). In vitro rooting and acclimatization ex vitro of Aronia melanocarpa cv. 'Nero'. Journal of Horticulture, Forestry and Biotechnology 26(1): 17- 22. https://doi.org/10.33045/fgr.v38.2022.29
Jakab I, Vlașin L D & Chiorean A M (2022). Behaviour of several chokeberry cultivars (Aronia melanocarpa) at the in vitro micropropagation. Romanian Journal of Horticulture Biotechnology 3: 31-36. https://doi.org/10.51258/RJH.2022.04
-
Jurikova T, Mlcek J, Skrovankova S, Sumczynski D, Sochor J, Hlavacova I, Snopek L & Orsavova J (2017). Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules 22(6): 944. https://doi.org/10.3390/molecules22060944
-
Kolde R. (2019). Pheatmap: Pretty Heatmaps. R package version 1.0.12, https://CRAN.R-project.org/package=pheatmap.
-
Kwak M C, Choi C H, Choi Y H & Moon H K (2015). Micropropagation of aronia (Aronia melaocarpa Elliot, black chokeberry) and its 5 varieties. Journal of Plant Biotechnology 42(4): 380-387
-
Leonard P J, Brand M H, Connolly B A & Obae S G (2013). Investigation of the Origin of Aronia mitschurinii using Amplified Fragment Length Polymorphism Analysis. Hortscience 48 (5): 520-524. https://doi.org/10.21273/HORTSCI.48.5.520
-
Litwinczuk W (2002). Propagation of black chokeberry (Aronia melanocarpa Elliot) through in vitro culture. Electronic Journal of Polish Agricultural Universities Horticulture 5(2)
-
Litwinczuk W. (2013). Micropropagation of chokeberry by in vitro axillary shoot proliferation, In: Protocols for Micropropagation of Selected Economically-Important Horticultural Plants. Lambardi M, Ozudogru E, Jain S (eds), Humana Press, 179-186. Springer New York, Heidelberg, Dordrecht, London
-
Mahoney J D, Wang S, Iorio L A, Wegrzyn J L, Dorris M, Martin D, Bolling B W, Brand M H & Wang H (2022). De novo assembly of a fruit transcriptome set identifies AmMYB10 as a key regulator of anthocyanin biosynthesis in Aronia melanocarpa. BMC Plant Biology
22(1): 143. https://doi.org/10.1186/s12870-022-03518-8
-
McClelland M T, Smith M A L & Carothers Z B (1990). The effects of in vitro and ex vitro root initiation on subsequent microcutting root quality in three woody plants. Plant Cell, Tissue and Organ Culture 23: 115-123. https://doi.org/10.1007/BF00035831
-
Murashige T & Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3):
473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
-
Nawandish F, Dumanoğlu H & Sarıkamış G (2024). Novel approaches to improve rooting of microshoots, acclimatization and plant growth of Pyrodwarf pear rootstock Plant Cell, Tissue and Organ Culture 157: 58. https://doi.org/10.1007/s11240-024-02781-x
-
Ochmian I, Grajkowski J & Smolik M (2012). Comparison of some morphological features, quality and chemical content of four cultivars of chokeberry fruits (Aronia melanocarpa).
Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40(1): 253-260.
https://doi.org/10.15835/nbha4017181
-
Özdemir K & Eroğlu Özkan E (2020). Chemical composition and biological activities of Aronia sp. berries. Journal of Faculty of Pharmacy of Ankara University 44(3): 557-570 (in Turkish with an abstract in English). https://doi.org/10.33483/jfpau.777371
-
Özkaya M T & Çelik M (1994). The effect of rooting environment and combination of auxin polyamine on the rooting ability of Turkish olive cultivars Gemlik and Domat. Acta Horticulturae 356: 31-34. https://doi.org/10.17660/ActaHortic.1994.356.4
-
Petrova I V, Tokhtar L A, Kulko S V & Borodayeva Z A (2019). In vitro clonal micropropagation of Aronia L. varieties from the collection of the botanic garden of the National Research University ‘BelSU’ (Belgorod, Russia). Eurasian Journal of Biosciences 13: 1071-1073
-
Petrovic D M & Jacimovic-Plavsic M M (1992). Aronia melancarpa and propagation in vitro. Acta Horticulturae 300: 133-136.
https://doi.org/10.17660/ActaHortic.1992.300.16
-
Polat M & Eskimez I (2022). The effects of different hormone combinations on in vitro micropropagation of aronia (Aronia melanocarpa
(Michx.) Elliott). Fresenius Environmental Bulletin 31: 1219-1227
-
R Core Team (2024). R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/
-
Ranaweera K K, Gunasekara M T K, & Eeswara J P (2013). Ex vitro rooting: a low-cost micropropagation technique for tea (Camellia sinensis
(L.) O. Kuntz) hybrids. Scientia Horticulturae 155,8-14. https://doi.org/10.1016/j.scienta.2013.03.001
-
Shi D, Xu J, Sheng L & Song K. (2024). Comprehensive utilization technology of Aronia melanocarpa. Molecules 29(6): 1388.
https://doi.org/10.3390/molecules29061388
-
Sivanesan I, Saini R K & Kim D H (2016). Bioactive compounds in hyperhydric and normal micropropagated shoots of Aronia melanocarpa (Michx.) Elliott. Industrial Crops and Products 83: 31-38. https://doi.org/10.1016/j.indcrop.2015.12.042
-
Soumare A, Diedhiou A G, Arora N K, Al-Ani L K T, Ngom M, Fall S, Hafidi M, Ouhdouch Y, Kouisni L & Sy M O (2021). Potential role and utilization of plant growth promoting microbes in plant tissue culture. Frontiers in Microbiology 12: 649878.
https://doi.org/10.3389/fmicb.2021.649878
-
B Staniene G, Stanys V, Bobinas C, Duchowski P & Merkys A (1999). In vitro propagation of non-traditional horticultural plants (Actinidia, Chaenomeles, Aronia). Zeszyty Problemowe Postępów Nauk Rolniczych 468: 441-443
-
Steffens & Rasmussen A (2016). The physiology of adventitious roots. Plant Physiology 170(2): 603-617.
https://doi.org/10.1104/pp.15.01360
-
Tang Y, Horikoshi M & Li W (2016). ggfortify: Unified Interface to Visualize Statistical Result of Popular R Packages. The R Journal 8(2):
474-485
-
Thimann K (1939). Auxins and the inhibition of plant growth. Biological Reviews 14: 314-337. https://doi.org/10.1111/j.1469
185X.1939.tb00937.x
Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York
-
Yan H, Liang C, Yang L & Li Y (2010). In vitro and ex vitro rooting of Siratia grosvenorii, a traditional medicinal plant. Acta Physiologia
Plantarum 32: 115-120. https://doi.org/10.1007/s11738-009-0386-0