Research Article
BibTex RIS Cite

Evaluation of Classification Accuracy of Spectral Indices and Machine Learning Algorithms for Greenhouse Detection Using the Google Earth Engine Platform

Year 2026, Volume: 32 Issue: 1, 158 - 176, 20.01.2026
https://doi.org/10.15832/ankutbd.1728949

Abstract

Accurate mapping of greenhouse areas is critically important for enhancing agricultural productivity and mitigating environmental impacts. Recently, remote sensing technologies have emerged as powerful tools for detailed and accurate detection of greenhouse areas and land use. The main objective of the study, which is to evaluate the effectiveness of spectral indices and Machine Learning (ML) algorithms in detecting greenhouse areas. This study employs Random Forest (RF), Support Vector Machine (SVM), and Classification and Regression Trees (CART) ML algorithms to classify Harmonized Sentinel-2 MSI (Multispectral Instrument) satellite imagery using the Google Earth Engine (GEE) platform. In addition, indices such as the Normalized Difference Vegetation Index (NDVI), Plastic Greenhouse Index (PGI), Retrogressive Plastic Greenhouse Index (RPGI), Plastic Mulched Landcover Index (PMLI), and Greenhouse Vegetable Land Extraction Index (Vi) were calculated and incorporated as bands for classification. In the study, a total of 7 data sets were created using various ML algorithms and indices. The highest overall accuracy (OA) and kappa (Κ) values were obtained as 88.10% and 0.804, respectively, in the classification using the PGI and RF algorithm. To test the significance of the accuracy assessment, the McNemar test was applied. The most significant relationship was observed in comparisons using the PGI and RF classifier, where the calculated statistic was greater than the critical x² value(x²=3.84 at 95% confidence interval).

References

  • Abdi A M (2020). Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience and Remote Sensing 57(1): 1–20. https://doi.org/10.1080/15481603.2019.1650447
  • Acharki S (2022). PlanetScope contributions compared to Sentinel-2, and Landsat-8 for LULC mapping. Remote Sensing Applications: Society and Environment 27, 100774. https://doi.org/10.1016/j.rsase.2022.100774
  • Aguilar M A, Jiménez-Lao R & Aguilar F J (2021). Evaluation of Object-Based Greenhouse Mapping Using WorldView-3 VNIR and SWIR Data: A Case Study fromAlmería (Spain). Remote Sensing 13(11). https://doi.org/10.3390/rs13112133
  • Aguilar M A, Nemmaoui A, Novelli A, Aguilar F J & Lorca A G (2016). Object-based greenhouse mapping using very high resolution satellite data and Landsat 8 time series. Remote Sensing 8(6). https://doi.org/10.3390/rs8060513
  • Aguilar M A, Vallario A, Aguilar F J, Lorca A G & Parente C (2015). Object-based greenhouse horticultural crop identification from multi temporal satellite imagery: A case study in Almeria, Spain. Remote Sensing 7(6): 7378–7401. https://doi.org/10.3390/rs70607378
  • Al-Najjar H A H, Kalantar B, Pradhan B, Saeidi V, Halin A A, Ueda N & Mansor S (2019). Land cover classification from fused DSM and UAV images using convolutional neural networks. Remote Sensing 11(12): https://doi.org/10.3390/rs11121461
  • Amini S, Saber M, Rabiei-Dastjerdi H & Homayouni S (2022). Urban Land Use and Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series. Remote Sensing, 14(11). https://doi.org/10.3390/rs14112654
  • Aronoff S (1982). Classification accuracy: a user approach. Photogrammetric Engineering and Remote Sensing 48(8): 1299–1307
  • Avtar R, Tripathi S, Aggarwal A K & Kumar P (2019). Population-urbanization-energy nexus: A review. In Resources 8(3). https://doi.org/10.3390/resources8030136
  • Ayazli I E (2024). Investigating the interactions between spatiotemporal land use/land cover dynamics and private land ownership. Land Use Policy 141, 107165. https://doi.org/10.1016/j.landusepol.2024.107165
  • Belgiu M & Drăgu L (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing 114: 24–31. https://doi.org/10.1016/J.ISPRSJPRS.2016.01.011
  • Bittencourt H R & Clarke R T (2003). Use of classification and regression trees (CART) to classify remotely-sensed digital images. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium 6: 3751–3753. https://doi.org/10.1109/IGARSS.2003.1295258
  • Breiman L (2001). Random forests. Machine Learning 45: 5–32
  • Camargo F F, Sano E E, Almeida C M, Mura J C & Almeida T (2019). A comparative assessment of machine-learning techniques for land use and land cover classification of the Brazilian tropical savanna using ALOS-2/PALSAR-2 polarimetric images. Remote Sensing 11(13). https://doi.org/10.3390/rs11131600
  • Castaldi F, Palombo A, Santini F, Pascucci S, Pignatti S & Casa R (2016). Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sensing of Environment 179: 54–65. https://doi.org/10.1016/J.RSE.2016.03.025
  • Chlouveraki E, Katsenios N, Efthimiadou A, Lazarou E, Kounani K, Papakonstantinou E, Vlachakis D, Kasimati A, Zafeiriou I, Espejo-Garcia B & Fountas S (2025). Estimation of soil properties using Hyperspectral imaging and Machine learning. Smart Agricultural Technology 10, 100790. https://doi.org/10.1016/J.ATECH.2025.100790
  • Cohen J (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1): 37–46
  • Çölkesen I, Yomralioglu T & Kavzoglu T (2014). Classification of Multispectral High-Resolution Satellite Imagery Using Rotation Forest Algorithm. V. Remote Sensing and Geographic Information Systems Symposium.
  • CuiB, Huang W J, Ye H C, Chen Q X, Li Z C & Jiang H Y (2022). Optimal Spatial Resolution of Remote-Sensing Imagery for Monitoring Cantaloupe Greenhouses. IOP Conference Series: Earth and Environmental Science 1004(1). https://doi.org/10.1088/1755 1315/1004/1/012020
  • Delaney B, Tansey K & Whelan M (2025). Satellite Remote Sensing Techniques and Limitations for Identifying Bare Soil. In Remote Sensing 17 (4). https://doi.org/10.3390/rs17040630 retrieve soil spectral
  • Demattê J A M, Fongaro C T, Rizzo R & Safanelli J L (2018). Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to reflectance from satellite images. Remote Sensing of Environment 212: 161–175. https://doi.org/10.1016/J.RSE.2018.04.047
  • Djamai N & Fernandes R (2018). Comparison of SNAP-derived Sentinel-2A L2A product to ESA product over Europe. In Remote Sensing 10 (6). https://doi.org/10.3390/rs10060926
  • Dou P, Shen H, Li Z, & Guan X (2021). Time series remote sensing image classification framework using combination of deep learning and multiple classifiers system. International Journal of Applied Earth Observation and Geoinformation 103, 102477. https://doi.org/10.1016/J.JAG.2021.102477
  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A, Spoto F, Sy O, Marchese F & Bargellini P (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment 120: 25–36. https://doi.org/10.1016/J.RSE.2011.11.026
  • Elmahdy S, Mohamed M & Ali T (2020). Land use/land cover changes impact on groundwater level and quality in the northern part of the United Arab Emirates. Remote Sensing 12(11). https://doi.org/10.3390/rs12111715
  • Foody G M (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment 239, 111630. https://doi.org/10.1016/J.RSE.2019.111630
  • Foody M G (2004). Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy. Photogrammetric Engineering and Remote Sensing 70(5): 627–633
  • Gao C, Wu Q, Dyck M, Fang L & He H (2022). Greenhouses Detection in Guanzhong Plain, Shaanxi, China: Evaluation of Four Classification Methods in Google Earth Engine. Canadian Journal of Remote Sensing 48(6): 747–763. https://doi.org/10.1080/07038992.2022.2117687
  • García Nieto P J, García-Gonzalo E, Alonso Fernández J R & Díaz Muñiz C (2014). Hybrid PSO–SVM-based method for long-term forecasting of turbidity in the Nalón river basin: A case study in Northern Spain. Ecological Engineering, 73: 192–200. https://doi.org/10.1016/J.ECOLENG.2014.09.042
  • Gislason P O, Benediktsson J A & Sveinsson J R (2006). Random Forests for land cover classification. Pattern Recognition Letters, 27(4): 294–300. https://doi.org/10.1016/J.PATREC.2005.08.011
  • Goldblatt R, Stuhlmacher M F, Tellman B, Clinton N, Hanson G, Georgescu M, Wang C, Serrano-Candela F, Khandelwal A K, Cheng W H & Balling R C (2018). Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sensing of Environment 205: 253–275. https://doi.org/10.1016/J.RSE.2017.11.026
  • Goldblatt R, You W, Hanson G & Khandelwal A K (2016a). Detecting the boundaries of urban areas in India: A dataset for pixel-based image classification in google earth engine. Remote Sensing 8(8). https://doi.org/10.3390/rs8080634
  • González-Yebra Ó, Aguilar M A, Nemmaoui A & Aguilar F J (2018). Methodological Proposal to Assess Plastic Greenhouses Land Cover Change from the Combination of Archival Aerial Orthoimages and Landsat Data. Biosystems Engineering 175: 36–51. https://doi.org/10.1016/j.biosystemseng.2018.08.009
  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D & Moore R (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202: 18–27. https://doi.org/10.1016/J.RSE.2017.06.031
  • Gowri L & Manjula K R (2024). Detection of land cover usage from optimized learnable parameter artificial neural network (OLPANN) using multispectral images. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-18828-2 Sentinel-2 time
  • Gröschler K C, Martens T, Schrautzer J & Oppelt N (2025). Data-driven identification of high-nature value grasslands using Harmonized Landsat series data. Remote Sensing Applications: Society and Environment 37, 101427. https://doi.org/10.1016/J.RSASE.2024.101427
  • Guan, H, Li J, Chapman M, Deng F, Ji Z & Yang X (2013). Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests. International Journal of Remote Sensing 34(14): 5166–5186. https://doi.org/10.1080/01431161.2013.788261
  • Ha N T, Manley-Harris M, Pham T D & Hawes I (2020). A comparative assessment of ensemble-based machine learning and maximum likelihood methods for mapping seagrass using sentinel-2 imagery in Tauranga Harbor, New Zealand. Remote Sensing 12(3). https://doi.org/10.3390/rs12030355
  • Hasituya & Chen Z (2017). Mapping Plastic-Mulched Farmland with Multi-Temporal Landsat-8 Data. Remote Sensing 9(6). https://doi.org/10.3390/rs9060557
  • Hasituya H, Chen Z, Wang L, Wu W, Jiang Z & Li H (2016). Monitoring Plastic-Mulched Farmland by Landsat-8 OLI Imagery Using Spectral and Textural Features. Remote Sensing 8(4). https://doi.org/10.3390/rs8040353
  • Huang C, Davis L S & Townshend J R G (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing 23(4): 725–749. https://doi.org/10.1080/01431160110040323
  • Ibrahim E & Gobin A (2021). Sentinel-2 Recognition of Uncovered and Plastic Covered Agricultural Soil. Remote Sensing 13(21). https://doi.org/10.3390/rs13214195
  • Jiménez-Lao R, Aguilar F J, Nemmaoui A & Aguilar M A (2020). Remote sensing of agricultural greenhouses and plastic-mulched farmland: An analysis of worldwide research. Remote Sensing 12(16). https://doi.org/10.3390/RS12162649
  • Kalacska M, Lucanus O, Sousa L & Arroyo-Mora J P (2020). High-Resolution Surface Water Classifications of the Xingu River, Brazil, Pre and Post Operationalization of the Belo Monte Hydropower Complex. https://doi.org/10.6084/m9.figshare.12521900.v1
  • Koc-San D (2013). Evaluation of Different Classification Techniques for the Detection of Glass and Plastic Greenhouses from WorldView-2 Satellite Imagery. Journal of Applied Remote Sensing 7(1): 073553. https://doi.org/10.1117/1.jrs.7.073553
  • Koc-San D, San B T, Bakis V, Helvaci M & Eker Z (2013). Multi-Criteria Decision Analysis integrated with GIS and remote sensing for astronomical observatory site selection in Antalya province, Turkey. Advances in Space Research 52(1): 39–51. https://doi.org/10.1016/J.ASR.2013.03.001
  • Kpienbaareh D, Sun X, Wang J, Luginaah I, Kerr R B, Lupafya E & Dakishoni L (2021). Crop type and land cover mapping in northern malawi using the integration of sentinel-1, sentinel-2, and planetscope satellite data. Remote Sensing 13(4): 1–21. https://doi.org/10.3390/rs13040700
  • Lawrence R L, Wood S D & Sheley R L (2006). Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomForest). Remote Sensing of Environment 100(3): 356–362. https://doi.org/10.1016/J.RSE.2005.10.014 Li J, Wang H, Wang J, Zhang J, Lan Y & Deng Y (2023). Combining Multi-Source Data and Feature Optimization for Plastic-Covered Greenhouse Extraction and Mapping Using the Google Earth Engine: A Case in Central Yunnan Province, China. Remote Sensing 15(13). https://doi.org/10.3390/rs15133287
  • Li X, Chen W, Cheng X & Wang L (2016). A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ZiYuan-3 stereo satellite imagery. Remote Sensing 8(6). https://doi.org/10.3390/rs8060514
  • Liu C, Frazier P & Kumar L (2007). Comparative assessment of the measures of thematic classification accuracy. Remote Sensing of Environment 107(4): 606–616. https://doi.org/10.1016/J.RSE.2006.10.010
  • Loukika K N, Keesara V R & Sridhar V (2021). Analysis of land use and land cover using machine learning algorithms on google earth engine for Munneru river basin, India. Sustainability (Switzerland) 13(24). https://doi.org/10.3390/su132413758
  • Lu L, Di L & Ye Y (2014). A decision-tree classifier for extracting transparent plastic-mulched Landcover from landsat-5 TM images. IEEE Journal of Selected Topics in Applied https://doi.org/10.1109/JSTARS.2014.2327226
  • Earth Observations and Remote Sensing 7(11): 4548–4558.
  • Maccioni A, Agati G & Mazzinghi P (2001). New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. Journal of Photochemistry and Photobiology B: Biology 61(1–2): 52–61. https://doi.org/10.1016/S1011 1344(01)00145-2
  • Malarvizhi K, Kumar S V & Porchelvan P (2016). Use of High Resolution Google Earth Satellite Imagery in Landuse Map Preparation for Urban Related Applications. Procedia Technology 24: 1835–1842. https://doi.org/10.1016/J.PROTCY.2016.05.231
  • Mallick K, Verfaillie J, Wang T, Ortiz A A, Szutu D, Yi K, Kang Y, Short, R, Hu T, Sulis M, Szantoi Z, Boulet G, Fisher J B & Baldocchi D (2024). Net fluxes of broadband shortwave and photosynthetically active radiation complement NDVI and near infrared reflectance of vegetation to explain gross photosynthesis variability across ecosystems and climate. Remote Sensing of Environment 307, 114123. https://doi.org/10.1016/J.RSE.2024.114123
  • Manos E, Witharana C, Udawalpola R, Hasan A & Liljedahl A K (2022). Convolutional Neural Networks for Automated Built Infrastructure Detection in the Arctic Using Sub-Meter Spatial Resolution Satellite Imagery. Remote Sensing 14(11). https://doi.org/10.3390/rs14112719
  • Mary R, Nasir R, Alam A, Tariq A, Nawaz R, Javied S, Zaman Q, Islam F & Nawaz Khan S (2023). Exploring hazard quotient, cancer risk, and health risks of toxic metals of the Mehmood Booti and Lakhodair landfill groundwaters, Pakistan. Environmental Nanotechnology, Monitoring & Management 20: 100838. https://doi.org/10.1016/J.ENMM.2023.100838
  • McBratney A, Field D J & Koch A (2014). The dimensions of soil security. Geoderma 213: 203–213. https://doi.org/10.1016/J.GEODERMA.2013.08.013
  • Millard K & Richardson M (2015). On the importance of training data sample selection in Random Forest image classification: A case study in peatland ecosystem mapping. Remote Sensing 7(7): 8489–8515. https://doi.org/10.3390/rs70708489 to Sentinel-2
  • Mokhtari A, Sadeghi M, Afrasiabian Y & Yu K (2023). OPTRAM-ET: A novel approach to remote sensing of actual evapotranspiration applied and Landsat-8 observations. Remote Sensing of Environment 286: 113443. https://doi.org/10.1016/J.RSE.2022.113443
  • Myint S W, Gober P, Brazel A, Grossman-Clarke S & Weng Q (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment 115(5): 1145–1161. https://doi.org/10.1016/J.RSE.2010.12.017
  • Nemmaoui A, Aguilar M A, Aguilar F J, Novelli A & Lorca A G (2018). Greenhouse crop identification from multi-temporal multi-sensor satellite imagery using object-based approach: A case study from Almería (Spain). Remote Sensing 10(11). https://doi.org/10.3390/rs10111751
  • Novelli A, Aguilar M A, Nemmaoui A, Aguilar F J & Tarantino E (2016). Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from Almería (Spain). International Journal of Applied Earth Observation and Geoinformation 52: 403–411. https://doi.org/10.1016/j.jag.2016.07.011
  • Novelli A & Tarantino E (2015). Combining Ad Hoc Spectral İndices Based on Landsat-8 OLI/TIRS Sensor Data for the Detection of Plastic Cover Vineyard. Remote Sensing Letters 6(12): 933–941. https://doi.org/10.1080/2150704X.2015.1093186
  • Ou C, Yang J, Du Z, Liu Y, Feng Q & Zhu D (2020). Long-Term Mapping of a Greenhouse in a Typical Protected Agricultural Region Using Landsat Imagery and the Google Earth Engine. Remote Sensing 12(1): 55. https://doi.org/10.3390/rs12010055
  • Ouma Y, Nkwae B, Moalafhi D, Odirile P, Parida B, Anderson G & Qi J (2022). Comparison of Machine Learning Classifiers for Multitemporal and Multisensor Mapping of Urban LULC Features. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 43: 681–689. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-681-2022
  • Pal M (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing 26(1): 217–222. https://doi.org/10.1080/01431160412331269698
  • Pal M & Foody G M (2012). Evaluation of SVM, RVM and SMLR for accurate image classification with limited ground data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(5): 1344–1355. https://doi.org/10.1109/JSTARS.2012.2215310
  • Pan Y, Qin J, Hou Y & Chen J J (2024). Two-stage support vector machine-enabled deep excavation settlement prediction considering class imbalance and multi-source uncertainties. Reliability Engineering & System Safety 241: 109578. https://doi.org/10.1016/J.RESS.2023.109578
  • Patela N N, Angiul, E, Gamba P, Gaughan A, Lisini G, Stevens F R, Tatem A J & Trianni G (2015). Multitemporal settlement and population mapping from Landsat using Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation 35: 199–208. https://doi.org/10.1016/J.JAG.2014.09.005
  • Pelletier C, Valero S, Inglada J, Champion N, Sicre C M & Dedieu G (2017). Effect of training class label noise on classification performances for land cover mapping with satellite image time series. Remote Sensing 9(2). https://doi.org/10.3390/rs9020173
  • Perilla G A & Mas J F (2019). High-Resolution Mapping of Protected Agriculture in Mexico, Through Remote Sensing Data Cloud Geoprocessing. European Journal of Remote Sensing 52(1): 532–541. https://doi.org/10.1080/22797254.2019.1686430
  • Phinzi K, Ngetar N S, Pham Q B, Chakilu G G & Szabó S (2023). Understanding the role of training sample size in the uncertainty of high resolution LULC mapping using random forest. Earth Science Informatics 16(4): 3667–3677. https://doi.org/10.1007/s12145-023-01117-1
  • Piramuthu S (2008). Input data for decision trees. Expert Systems with Applications, 34(2): 1220–1226. https://doi.org/10.1016/J.ESWA.2006.12.030
  • Prasad A M, Iverson L R & Liaw A (2006). Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 9(2): 181–199. https://doi.org/10.1007/s10021-005-0054-1
  • Qu Y & Long H (2018). The economic and environmental effects of land use transitions under rapid urbanization and the implications for land use management. Habitat International 82: 113–121. https://doi.org/10.1016/J.HABITATINT.2018.10.009
  • Rodriguez-Galiano V F, Ghimire B, Rogan J, Chica-Olmo M & Rigol-Sanchez J P (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67(1): 93–104. https://doi.org/10.1016/J.ISPRSJPRS.2011.11.002
  • Rouse J W, Haas R H, Schell J A & Deering D W (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ 351(1): 309.
  • Salas E A L & Henebry G M (2012). Separability of maize and soybean in the spectral regions of chlorophyll and carotenoids using the Moment Distance Index. Israel Journal of Plant Sciences 60(1–2): 65–76. https://doi.org/10.1560/IJPS.60.1-2.65
  • Srivastava P K, Han D, Rico-Ramirez M A, Bray M & Islam T (2012). Selection of classification techniques for land use/land cover change investigation. Advances in Space Research 50(9): 1250–1265. https://doi.org/10.1016/J.ASR.2012.06.032
  • Stehfest E, Van Zeist W J, Valin H, Havlik P, Popp A, Kyle P, Tabeau A, Mason-D’Croz D, Hasegawa T, Bodirsky B L, Calvin, K, Doelman J C, Fujimori S, Humpenöder F, Lotze-Campen H, Van Meijl H & Wiebe K (2019). Key determinants of global land-use projections. Nature Communications 10(1). https://doi.org/10.1038/s41467-019-09945-w
  • Stoian A, Poulain V, Inglada J, Poughon V & Derksen D (2019). Land cover maps production with high resolution satellite image time series and convolutional neural networks: Adaptations and limits for operational systems. Remote Sensing 11(17). https://doi.org/10.3390/rs11171986
  • Sun X, Li X, Tan B, Gao J, Wang L & Xiong S (2025). Integrating Otsu Thresholding and Random Forest for Land Use/Land Cover (LULC) Classification and Seasonal Analysis of Water and Snow/Ice. Remote Sensing 17(5). https://doi.org/10.3390/rs17050797
  • Talukdar S, Singha P, Shahfahad Mahato S, Praveen B & Rahman A (2020). Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India. Ecological Indicators 112: 106121. https://doi.org/10.1016/J.ECOLIND.2020.106121
  • Tariq A, Jiango Y, Li Q, Gao J, Lu L, Soufan W, Almutairi K F & Habib-ur-Rahman M (2023). Modelling, mapping and monitoring of forest cover changes, using support vector machine, kernel logistic regression and naive bayes tree models with optical remote sensing data. Heliyon 9(2). https://doi.org/10.1016/J.HELIYON.2023.E13212
  • Vapnik V (2013). The nature of statistical learning theory. Springer science & business media. Veettil B K, Van D D, Quang N X & Hoai P N (2022). Remote Sensing of Plastic-Covered Greenhouses and Plastic-Mulched Farmlands: Current Trends and Future Perspectives. In Land Degradation and Development. John Wiley and Sons Ltd. https://doi.org/10.1002/ldr.4497
  • Veettil B K & Xuan Q N (2022). Correction to: Landsat-8 and Sentinel-2 Data for Mapping Plastic-Covered Greenhouse Farming Areas: A Study From Dalat City (Lam Dong Province), Vietnam. In Environmental Science and Pollution Research 29 (49): 73934. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s11356-022-21677-x
  • Xie Z, Chen Y, Lu D, Li G & Chen E (2019). Classification of land cover, forest, and tree species classes with Ziyuan-3 multispectral and stereo data. Remote Sensing 11(2). https://doi.org/10.3390/rs11020164
  • Xiong Y, Zhang Q, Chen X, Bao A, Zhang J & Wang Y (2019). Large Scale Agricultural Plastic Mulch Detecting and Monitoring with Multi Source Remote Sensing Data: A Case Study in Xinjiang, China. Remote Sensing 11(18). https://doi.org/10.3390/rs11182088
  • Xue J & Su B (2017). Significant remote sensing vegetation indices: A review of developments and applications. In Journal of Sensors 2017. https://doi.org/10.1155/2017/1353691
  • Yang D, Chen J, Zhou Y, Chen X, Chen X & Cao X (2017). Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 47–60. https://doi.org/10.1016/J.ISPRSJPRS.2017.03.002
  • Yang D, Sun S, Chen J & Liu X (2016). Analysis for the spatial and temporal patterns of plasticulture In Shandong Province, China with remotely sensed data. 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics) 1–4.
  • Yilmaz O S, Ateş A M & Gülgen F (2023). A novel approach suggestion for assessing the impact of topographic shading on the estimation of the floating photovoltaic technical potential. Energy 283: 128479. https://doi.org/10.1016/j.energy.2023.128479 Zarco-Tejada P J, González-Dugo V & Berni J A J (2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment 117: 322–337. https://doi.org/10.1016/J.RSE.2011.10.007
  • Zhang T, Tang B H, Huang L & Chen G (2022). Rice and Greenhouse Identification in Plateau Areas Incorporating Sentinel-1/2 Optical and Radar Remote Sensing Data from Google Earth Engine. Remote Sensing 14(22). https://doi.org/10.3390/rs14225727
  • Zhao GengXing Z G, Li Jing L J, Li Tao L T, Yue YuDe Y Y & Warner T (2004). Utilizing landsat TM imagery to map greenhouses in Qingzhou, Shandong Province, China. longitudinal
  • Zhao M, Xue B, Li B, Zhu J & Song W (2024). Ensemble learning with support vector machines algorithm for surface roughness prediction in vibratory ultrasound-assisted grinding. Precision Engineering 88: 382–400. https://doi.org/10.1016/J.PRECISIONENG.2024.02.018
  • Zhao Z, Islam F, Waseem L A, Tariq A, Nawaz M, Islam I U, Bibi T, Rehman N U, Ahmad W, Aslam R W, Raza D & Hatamleh W A (2024). Comparison of Three Machine Learning Algorithms Using Google Earth Engine for Land Use Land Cover Classification. Rangeland Ecology & Management 92: 129–137. https://doi.org/10.1016/j.rama.2023.10.007
  • Zhu Y, Geis C, So E & Jin Y (2021). Multitemporal Relearning with Convolutional LSTM Models for Land Use Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14: 3251–3265. https://doi.org/10.1109/JSTARS.2021.3055784
There are 99 citations in total.

Details

Primary Language English
Subjects Agricultural Land Planning, Agricultural Spatial Analysis and Modelling
Journal Section Research Article
Authors

Ramazan Güngör 0000-0002-6338-8554

Füsun Balık Şanlı 0000-0003-1243-8299

Ali Murat Ateş 0000-0002-2815-1404

Osman Salih Yılmaz 0000-0003-4632-9349

Submission Date June 27, 2025
Acceptance Date September 20, 2025
Publication Date January 20, 2026
Published in Issue Year 2026 Volume: 32 Issue: 1

Cite

APA Güngör, R., Balık Şanlı, F., Ateş, A. M., Yılmaz, O. S. (2026). Evaluation of Classification Accuracy of Spectral Indices and Machine Learning Algorithms for Greenhouse Detection Using the Google Earth Engine Platform. Journal of Agricultural Sciences, 32(1), 158-176. https://doi.org/10.15832/ankutbd.1728949
AMA Güngör R, Balık Şanlı F, Ateş AM, Yılmaz OS. Evaluation of Classification Accuracy of Spectral Indices and Machine Learning Algorithms for Greenhouse Detection Using the Google Earth Engine Platform. J Agr Sci-Tarim Bili. January 2026;32(1):158-176. doi:10.15832/ankutbd.1728949
Chicago Güngör, Ramazan, Füsun Balık Şanlı, Ali Murat Ateş, and Osman Salih Yılmaz. “Evaluation of Classification Accuracy of Spectral Indices and Machine Learning Algorithms for Greenhouse Detection Using the Google Earth Engine Platform”. Journal of Agricultural Sciences 32, no. 1 (January 2026): 158-76. https://doi.org/10.15832/ankutbd.1728949.
EndNote Güngör R, Balık Şanlı F, Ateş AM, Yılmaz OS (January 1, 2026) Evaluation of Classification Accuracy of Spectral Indices and Machine Learning Algorithms for Greenhouse Detection Using the Google Earth Engine Platform. Journal of Agricultural Sciences 32 1 158–176.
IEEE R. Güngör, F. Balık Şanlı, A. M. Ateş, and O. S. Yılmaz, “Evaluation of Classification Accuracy of Spectral Indices and Machine Learning Algorithms for Greenhouse Detection Using the Google Earth Engine Platform”, J Agr Sci-Tarim Bili, vol. 32, no. 1, pp. 158–176, 2026, doi: 10.15832/ankutbd.1728949.
ISNAD Güngör, Ramazan et al. “Evaluation of Classification Accuracy of Spectral Indices and Machine Learning Algorithms for Greenhouse Detection Using the Google Earth Engine Platform”. Journal of Agricultural Sciences 32/1 (January2026), 158-176. https://doi.org/10.15832/ankutbd.1728949.
JAMA Güngör R, Balık Şanlı F, Ateş AM, Yılmaz OS. Evaluation of Classification Accuracy of Spectral Indices and Machine Learning Algorithms for Greenhouse Detection Using the Google Earth Engine Platform. J Agr Sci-Tarim Bili. 2026;32:158–176.
MLA Güngör, Ramazan et al. “Evaluation of Classification Accuracy of Spectral Indices and Machine Learning Algorithms for Greenhouse Detection Using the Google Earth Engine Platform”. Journal of Agricultural Sciences, vol. 32, no. 1, 2026, pp. 158-76, doi:10.15832/ankutbd.1728949.
Vancouver Güngör R, Balık Şanlı F, Ateş AM, Yılmaz OS. Evaluation of Classification Accuracy of Spectral Indices and Machine Learning Algorithms for Greenhouse Detection Using the Google Earth Engine Platform. J Agr Sci-Tarim Bili. 2026;32(1):158-76.

Journal of Agricultural Sciences is published as open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).