Year 2015,
, 546 - 557, 15.12.2015
Özlem Terzi
,
Melike Barak
References
- Adamowski J & Chan H F (2011). A wavelet neural network conjuction model for groundwater level forecasting. Journal of Hydrology407: 28-40
- Anctil F & Tape D G (2004). An exploration of artificial neural network rainfall runoff forecasting combined with wavelet decomposition. Journal of Environmental Engineering and Science3: 121-129
- Bayazıt M (1998). Hidrolojik Modeller. İTÜ İnşaat Fakültesi Matbaası, İstanbul
- Coulibaly P & Burn D H (2004). Wavelet analysis of variability in annual Canadian Streamflows. Water Resources Research47: 1-14
- Coşkun Ö & Çömlekçi S (2007). Wavelet teorisinin medikal alana uygulanması üzerine bir ön çalışma. Akademik
- Bilişim’07 - IX. Akademik Bilişim Konferansı, 31 Ocak - 2 Şubat 2007, Dumlupınar Üniversitesi, Kütahya, s. 317-320
- Fausett L (1994). Fundamentals of neural networks: Architectures, algorithms, and applications. Prentice Hall, New Jersey
- Fay D & Ringwood J V (2007). A wavelet transfer model for time-series forecasting. International Journal
- Bifurcation and Chaos17(10): 3691-3696
- Gaucherel C (2002). Use of wavelet transform for temporal characterisation of remote watersheds. Journal of Hydrology,269: 101–121
- Kartalopoulos S V (1996). Understanding neural networks and fuzzy logic: basic concepts and applications. IEEE Press, New York 20 100 200 300 400 500 600 700 800 Zaman (gün) 4. Sonuçlar
- Adamowski J & Chan H F (2011). A wavelet neural network conjuction model for groundwater level forecasting. Journal of Hydrology 407: 28-40
- Anctil F & Tape D G (2004). An exploration of artificial neural network rainfall runoff forecasting combined with wavelet decomposition. Journal of Environmental Engineering and Science 3: 121-129
- Bayazıt M (1998). Hidrolojik Modeller. İTÜ İnşaat Fakültesi Matbaası, İstanbul
- Coulibaly P & Burn D H (2004). Wavelet analysis of variability in annual Canadian Streamflows. Water Resources Research 47: 1-14
- Coşkun Ö & Çömlekçi S (2007). Wavelet teorisinin medikal alana uygulanması üzerine bir ön çalışma. Akademik Bilişim’07 - IX. Akademik Bilişim Konferansı, 31 Ocak - 2 Şubat 2007, Dumlupınar Üniversitesi, Kütahya, s. 317-320
- Fausett L (1994). Fundamentals of neural networks: Architectures, algorithms, and applications. Prentice Hall, New Jersey
- Fay D & Ringwood J V (2007). A wavelet transfer model for time-series forecasting. International Journal Bifurcation and Chaos 17(10): 3691-3696
- Gaucherel C (2002). Use of wavelet transform for temporal characterisation of remote watersheds. Journal of Hydrology 269: 101–121
- Kartalopoulos S V (1996). Understanding neural networks and fuzzy logic: basic concepts and applications. IEEE Press, New York
- Kim T & Valdes J B (2003). Nonlinear model for drought forecasting based on a conjuction of wavelet transforms and neural networks. Journal of Hydrologic Engineering 8(6): 319-328
- Kişi Ö (2009). Neural network and wavelet conjunction model for intermittent streamflow forecasting. Journal of Hydrologic Engineering 14(8): 773-782
- Kişi Ö (2010). Wavelet regression model for short-term streamflow forecasting. Journal of Hydrology 389(3- 4): 344–353
- Kişi Ö & Partal T (2011). Wavelet and neuro-fuzzy conjuction model for streamflow forecasting. Hydrology Research 42(6): 447-456
- Kohonen T (1988). An introduction to neural computing. Neural Networks, 1: 3-6
- Krishna B, Satyaji Rao Y R & Nayak P C (2011). Time series modeling of river flow using wavelet neural networks. Journal of Water Resource and Protection 3: 50-59
- Kumar P & Foufoula-Georgiou E (1993). A multicomponent decomposition of spatial rainfall fields 2. Self-similarity in fluactions. Water Resources Research 29(8): 2533- 2544
- Küçük M (2004). Dalgacık dönüşüm tekniği kullanarak akım serilerinin modellenmesi. Doktora Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul Küçük M & Ağıralioğlu N (2006). Dalgacık dönüşüm tekniği kullanilarak hidrolojik akım serilerinin modellenmesi. İstanbul Teknik Üniversitesi Dergisi- Mühendislik 5(2): 69-80
- Lafreniere M & Sharp M (2003). Wavelet analysis of inter-annual variability in the runoff regimes of Glacial and Nival Stream Catchments, Bow Lake, Alberta. Hydrological Processes 17: 1093–1118
- Mallat S G (1989). A theory for multiresoluion signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7): 674–693
- Okkan U (2013). Wavelet neural network model for reservoir inflow prediction. Scientia Iranica 19(6): 1445-1455
- Öztemel E (2003). Yapay sinir ağları. Papatya Yayıncılık, İstanbul
- Partal T (2007). Türkiye yağış miktarlarının yapay sinir ağları ve dalgacık dönüşümü yöntemleri ile tahmini. Doktora tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul
- Partal T & Küçük M (2006). Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara Region (Turkey). Physical Chemistry Earth 31: 1189-1200
- Partal T & Kişi Ö (2007). Wavelet and neuro-fuzzy conjuction model for precipitation forecasting. Journal of Hydrology 342: 199-212
- Partal T & Cığızoğlu H K (2008). Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. Journal of Hydrology 358: 317-331
- Partal T, Kahya E & Cığızoğlu K (2008). Yağış verilerinin yapay sinir ağları ve dalgacık dönüşümü yöntemleri ile tahmini. İstanbul Teknik Üniversitesi Dergisi- Mühendislik 7(3): 73-85
- Tantanee S, Patamatammakul S, Oki T, Sriboonlue V & Prempree T (2005). Coupled wavelet-autoregressive model for annual rainfall prediction. Journal of Environmental Hydrology 13(18): 1-8
- Tiwari M K & Chatterjee C (2011). A new wavelet- bootstrap-ANN hybrid model for daily discharge forecasting. Journal of Hydroinformatics 13(3): 500- 519
- Wang W & Ding J (2003). Wavelet network model and its application to the prediction of hydrology. Nature and Science 1(1): 67-71
Dalgacık-Sinir Ağı Yaklaşımı ile Yağış-Akış Tahmini: Kızılırmak Nehri Örneği
Year 2015,
, 546 - 557, 15.12.2015
Özlem Terzi
,
Melike Barak
Abstract
Su kaynaklarının planlanmasında önemli bir etmen olan akarsu akımlarının tahmini için dalgacık dönüşüm tekniği (D) ve yapay sinir ağları (YSA) yöntemi kullanılarak modeller geliştirilmiştir. Kızılırmak Nehri’nde bulunan Söğütlühan akım istasyonuna ait akım tahmin modelleri geliştirmek için Sivas meteoroloji istasyonuna ait yağış verileri kullanılmıştır. İlk olarak ölçülmüş orijinal yağış serileri kullanılarak YSA modelleri geliştirilmiştir. Daha sonra, ölçülmüş yağış değerleri dalgacık dönüşümü ile alt serilere ayrılmıştır. Yağış alt serileri ile dalgacık-yapay sinir ağı (D-YSA) modelleri geliştirilmiştir. Geliştirilen modeller ölçülmüş değerlerle kıyaslandığında, dalgacık dönüşümü uygulandıktan sonra elde edilen D-YSA modellerinin, orijinal serilerle elde edilen YSA modellerinden daha iyi performans sergilediği görülmüştür.
References
- Adamowski J & Chan H F (2011). A wavelet neural network conjuction model for groundwater level forecasting. Journal of Hydrology407: 28-40
- Anctil F & Tape D G (2004). An exploration of artificial neural network rainfall runoff forecasting combined with wavelet decomposition. Journal of Environmental Engineering and Science3: 121-129
- Bayazıt M (1998). Hidrolojik Modeller. İTÜ İnşaat Fakültesi Matbaası, İstanbul
- Coulibaly P & Burn D H (2004). Wavelet analysis of variability in annual Canadian Streamflows. Water Resources Research47: 1-14
- Coşkun Ö & Çömlekçi S (2007). Wavelet teorisinin medikal alana uygulanması üzerine bir ön çalışma. Akademik
- Bilişim’07 - IX. Akademik Bilişim Konferansı, 31 Ocak - 2 Şubat 2007, Dumlupınar Üniversitesi, Kütahya, s. 317-320
- Fausett L (1994). Fundamentals of neural networks: Architectures, algorithms, and applications. Prentice Hall, New Jersey
- Fay D & Ringwood J V (2007). A wavelet transfer model for time-series forecasting. International Journal
- Bifurcation and Chaos17(10): 3691-3696
- Gaucherel C (2002). Use of wavelet transform for temporal characterisation of remote watersheds. Journal of Hydrology,269: 101–121
- Kartalopoulos S V (1996). Understanding neural networks and fuzzy logic: basic concepts and applications. IEEE Press, New York 20 100 200 300 400 500 600 700 800 Zaman (gün) 4. Sonuçlar
- Adamowski J & Chan H F (2011). A wavelet neural network conjuction model for groundwater level forecasting. Journal of Hydrology 407: 28-40
- Anctil F & Tape D G (2004). An exploration of artificial neural network rainfall runoff forecasting combined with wavelet decomposition. Journal of Environmental Engineering and Science 3: 121-129
- Bayazıt M (1998). Hidrolojik Modeller. İTÜ İnşaat Fakültesi Matbaası, İstanbul
- Coulibaly P & Burn D H (2004). Wavelet analysis of variability in annual Canadian Streamflows. Water Resources Research 47: 1-14
- Coşkun Ö & Çömlekçi S (2007). Wavelet teorisinin medikal alana uygulanması üzerine bir ön çalışma. Akademik Bilişim’07 - IX. Akademik Bilişim Konferansı, 31 Ocak - 2 Şubat 2007, Dumlupınar Üniversitesi, Kütahya, s. 317-320
- Fausett L (1994). Fundamentals of neural networks: Architectures, algorithms, and applications. Prentice Hall, New Jersey
- Fay D & Ringwood J V (2007). A wavelet transfer model for time-series forecasting. International Journal Bifurcation and Chaos 17(10): 3691-3696
- Gaucherel C (2002). Use of wavelet transform for temporal characterisation of remote watersheds. Journal of Hydrology 269: 101–121
- Kartalopoulos S V (1996). Understanding neural networks and fuzzy logic: basic concepts and applications. IEEE Press, New York
- Kim T & Valdes J B (2003). Nonlinear model for drought forecasting based on a conjuction of wavelet transforms and neural networks. Journal of Hydrologic Engineering 8(6): 319-328
- Kişi Ö (2009). Neural network and wavelet conjunction model for intermittent streamflow forecasting. Journal of Hydrologic Engineering 14(8): 773-782
- Kişi Ö (2010). Wavelet regression model for short-term streamflow forecasting. Journal of Hydrology 389(3- 4): 344–353
- Kişi Ö & Partal T (2011). Wavelet and neuro-fuzzy conjuction model for streamflow forecasting. Hydrology Research 42(6): 447-456
- Kohonen T (1988). An introduction to neural computing. Neural Networks, 1: 3-6
- Krishna B, Satyaji Rao Y R & Nayak P C (2011). Time series modeling of river flow using wavelet neural networks. Journal of Water Resource and Protection 3: 50-59
- Kumar P & Foufoula-Georgiou E (1993). A multicomponent decomposition of spatial rainfall fields 2. Self-similarity in fluactions. Water Resources Research 29(8): 2533- 2544
- Küçük M (2004). Dalgacık dönüşüm tekniği kullanarak akım serilerinin modellenmesi. Doktora Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul Küçük M & Ağıralioğlu N (2006). Dalgacık dönüşüm tekniği kullanilarak hidrolojik akım serilerinin modellenmesi. İstanbul Teknik Üniversitesi Dergisi- Mühendislik 5(2): 69-80
- Lafreniere M & Sharp M (2003). Wavelet analysis of inter-annual variability in the runoff regimes of Glacial and Nival Stream Catchments, Bow Lake, Alberta. Hydrological Processes 17: 1093–1118
- Mallat S G (1989). A theory for multiresoluion signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7): 674–693
- Okkan U (2013). Wavelet neural network model for reservoir inflow prediction. Scientia Iranica 19(6): 1445-1455
- Öztemel E (2003). Yapay sinir ağları. Papatya Yayıncılık, İstanbul
- Partal T (2007). Türkiye yağış miktarlarının yapay sinir ağları ve dalgacık dönüşümü yöntemleri ile tahmini. Doktora tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul
- Partal T & Küçük M (2006). Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara Region (Turkey). Physical Chemistry Earth 31: 1189-1200
- Partal T & Kişi Ö (2007). Wavelet and neuro-fuzzy conjuction model for precipitation forecasting. Journal of Hydrology 342: 199-212
- Partal T & Cığızoğlu H K (2008). Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. Journal of Hydrology 358: 317-331
- Partal T, Kahya E & Cığızoğlu K (2008). Yağış verilerinin yapay sinir ağları ve dalgacık dönüşümü yöntemleri ile tahmini. İstanbul Teknik Üniversitesi Dergisi- Mühendislik 7(3): 73-85
- Tantanee S, Patamatammakul S, Oki T, Sriboonlue V & Prempree T (2005). Coupled wavelet-autoregressive model for annual rainfall prediction. Journal of Environmental Hydrology 13(18): 1-8
- Tiwari M K & Chatterjee C (2011). A new wavelet- bootstrap-ANN hybrid model for daily discharge forecasting. Journal of Hydroinformatics 13(3): 500- 519
- Wang W & Ding J (2003). Wavelet network model and its application to the prediction of hydrology. Nature and Science 1(1): 67-71