Research Article
BibTex RIS Cite

Tavuklarda Marek Hastalığı’na Karşı Dirençli Genlerin SNP Genetik Markerlerinden Yararlanılarak Belirlenmesi

Year 2015, , 449 - 458, 15.12.2015
https://doi.org/10.1501/Tarimbil_0000001348

Abstract

Tavukçuluk endüstrisini tehdit eden hastalıklardan birisi olan Marek Hastalığı (MH), alfa-herpesviruslerden biri olan Marek Hastalık Virüsü (MHV)’nün neden olduğu, bulaşıcı ve kanserojen bir hastalıktır. MH’ye karşı dayanıklılığı arttırmak için başlıca yöntem günlük civcivlerin aşılanmasıdır. Aşılama sonucunda bağışıklık sisteminde meydana gelen yetersizliklerden dolayı MH ile mücadelede diğer bir yöntem MH’ye genetik olarak dirençli tavukların yetiştirilmesidir. Bu çalışmada, tavuklarda ENO1, TPT1 ve RBBP4 genlerinin MH’ye karşı dayanıklılığa katkı sağlayıp sağlamadığı allele özgü ekspresyon tekniği kullanılarak araştırılmıştır. Araştırmada, materyal olarak MH’ye dayanıklı (hat 6) ve duyarlı (hat 7) tavuk hatlarının resiprokal melezlenmesi sonucunda elde edilen F1 dölleri kullanılmıştır. Tavukların Bursa fabricius, timus ve dalak organlarından RNA izole edilmiş ve pirosekanslama yöntemi ile her bir allelin ekspresyon seviyesi belirlenmiştir. Araştırma sonuçları, TPT1 ve RBBP4 genlerinin cis-acting elemente sahip olduğunu, ancak bu cis-acting elementlerin MH’na karşı direnç oluşturmada rol oynamadığını ortaya koymuştur.

References

  • Bacon L D & Witter R L (1994a). Serotype specificity of B-Haplotype influence on the relative efficacy of Marek’s disease virus. Avian Diseases 38: 65-71
  • Bacon L D & Witter R L (1994b). B-haplotype influence on the relative efficacy of Marek’s disease vaccines in commercial chickens. Poultry Science 73: 481-487
  • Bray N J, Buckland P R, Owen M J & O’Donovan M C (2003). Cis-acting variation in the expression of a high proportion of genes in human brain. Human Genetics 113: 149–153
  • Calnek B W (1998). Lymphomagenesis in Marek’s disease. Avian Pathology 27: 54-64
  • Cheng H H (2003). Selection for disease resistance: Molecular genetics techniques. In: W M Muir & S E Aggrey (Eds), Poultry Genetics, Breeding and Biotechnology, CABI Publishing, Trowbridge, UK, pp. 385-398
  • Cheng H H, Zhang Y & Muir W M (2007). Evidence for widespread epistatic interactions influencing Marek’s disease virus viremia levels in chicken. Cytogenetic and Genome Research 117: 313–318
  • Cheung V G, Nayak R R, Wang I X, Elwyn S, Cousins S M, Morley M & Spielman R S (2010). Polymorphic cis- and transregulation of human gene expression. PLoS Biology 8(9): e1000480
  • Cowles C R, Hirschhorn J N, Altshuler D & Lander E S (2002). Detection of regulatory variation in mouse genes. Nature Genetics 32: 432–437
  • Havenstein G B, Ferket P R & Qureshi M A (2003). Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science 82: 1509-1518
  • Lee L F, Powell P C, Rennie M, Ross L J N & Payne L N (1981). Nature of genetic resistance to Marek’s disease in chickens. Journal of the National Cancer Institute 66: 789-796
  • Liu H C, Kung H J, Fulton J E, Morgan R W & Cheng H H (2001). Growth hormone interacts with the Marek’s disease virus SORF2 protein and is associated with disease resistance in chicken. Proceedings of the National Academy of Science 98: 9203–9208
  • Liu H C, Niikura M, Fulton J & Cheng H H (2003). Identification of chicken stem lymphocyte antigen 6 complex, locus E (LY6E, alias SCA2) as a putative Marek’s disease resistance gene via a virus-host protein interaction screen. Cytogenetic and Genome Research 102: 304–308
  • MacEachern S, Muir W M, Crosby S D & Cheng H H (2012). Genome-wide identification and quantification of cis-and trans-regulated genes responding to Marek’s disease virus infection via analysis of allele- specific expression. Frontiers in Genetics 2: 113
  • Marek J (1907). Mutiple Nervenentzundung (Polyneuritis) bei Huhnern. Deutsche Tierarztliche Wochenschrift 15: 417-421
  • Meydan H, Yildiz M A, Dodgson J B & Cheng H H (2011). Allele-specific expression analysis reveals CD79B has a cis-acting regulatory element that responds to Marek’s disease virus infection in chickens. Poultry Science 90: 1206–1211
  • Nair V, Jones C R & Gough R E (2008). Viral Diseases. In: D J Alexander (Ed), Poultry Diseases, Saunders Elsevier, Chine, pp. 258-275
  • Neer E J, Schmidt C J, Nambudripad R & Smith T F (1994). The ancient regulatory-protein family of WD- repeat proteins. Nature 371(6495): 297-300
  • Niikura M, Liu H C, Dodgson J B & Cheng H H (2004). A comprehensive screen for chicken proteins that interact with proteins unique to virulent strains of Marek’s disease virus. Poultry Science 83: 1117–1123
  • Osterrieder N, Kamil J P, Schumacher D, Tischer B K & Trap S (2006). Marek’s disease virus: from miasma to model. Nature Review Microbiology 4: 283-294
  • Perumbakkam S, Muir W M, Black-Pyrkosz A, Okimoto R & Cheng H H (2013). Comparison and contrast of genes and biological pathways responding to Marek’s disease virus infection using allele-specific expression and differential expression in broiler and layer chickens. BMC Genomics 14: 64
  • Purchase H G (1985). Clinical disease and its economic impact. In: L N Payne (Ed), Marek’s Disease, Scientific Basis and Methods of Control. Martinus Nijhoff Publishing, Boston, pp. 17-42
  • Purchase H G & Okazaki W (1971). Effect of vaccination with herpesvirus of turkeys (HVT) on horizontal spread of Marek’s disease herpesvirus. Avian Disease 15: 391-397
  • Schat K A, Calnek B W, Fabricant J & Abplanalp H (1981). Influence of oncogenicity of Marek’ disease virus on evaluation of genetic resistance. Poultry Science 60: 2559-2566
  • Schat K A, Chen C L H, Calnek B W & Char D (1991). Transformation of T-lymphocyte subsets by Marek’s disease herpesvirus. Journal of Virology 65: 1408- 1413
  • Serre D, Gurd S, Ge B, Sladek R, Sinnett D, Harmsen E, Bibikova M, Chudin E, Barker D L, Dickinson T, Fan J B & Hudson T J (2008). Differential allelic expression in the human genome: A robust approach to identify genetic and epigenetic cis-acting mechanisms regulating gene expression. PLoS Genetics 4(2): e1000006.
  • Stamatoyannopoulos J A (2004). The genomics of gene expression. Genomics 84: 449-457
  • Tanaka M, Maeda K & Nakashima K (1995). Chicken alpha-enolase but not beta-enolase has a Src- dependent tyrosine-phosphorylation site: cDNA cloning and nucleotide sequence analysis. Journal of Biochemistry 117: 554-559
  • Vallejo R L, Bacon L D, Liu H C, Witter R L, Groenen M A M, Hillel J & Cheng H H (1998). Genetic mapping of quantitative trait loci affecting susceptibility to Marek’s disease virus induced tumors in F2 intercross chickens. Genetics 148: 349-360
  • Witter R L, Sharma J M & Fadly A M (1980). Pathogenicity of variants Marek’s disease isolates in vaccinated and unvaccinated chickens. Avian Disease 24: 210-232
  • Witter R L (1997). Increased virulence of Marek’s disease virus field isolates. Avian Diseases 41: 149-163
  • Yan H, Yuan W, Velculescu V E, Vogelstein B & Kinzler K W (2002). Allelic variation in human gene expression. Science 297: 1143
  • Yonash N, Bacon L D, Witter R L & Cheng H H (1999). High resolution mapping and identification of new quantitative trait loci (QTL) affecting susceptibility to Marek’s disease. Animal Genetics 30: 126-135
  • Yubero N, Esteso G, Cardona H, Morera L, Garrido J J & Barbancho M (2009). Molecular cloning, expression analysis and chromosome localization of the Tpt1 gene coding for the pig translationally controlled tumor protein (TCTP). Molecular Biology Reports 36: 1957–1965

Tavuklarda Marek Hastalığı’na Karşı Dirençli Genlerin SNP Genetik

Year 2015, , 449 - 458, 15.12.2015
https://doi.org/10.1501/Tarimbil_0000001348

Abstract

Tavukçuluk endüstrisini tehdit eden hastalıklardan birisi olan Marek Hastalığı (MH), alfa-herpesviruslerden biri olan Marek Hastalık Virüsü (MHV)’nün neden olduğu, bulaşıcı ve kanserojen bir hastalıktır. MH’ye karşı dayanıklılığı arttırmak için başlıca yöntem günlük civcivlerin aşılanmasıdır. Aşılama sonucunda bağışıklık sisteminde meydana gelen yetersizliklerden dolayı MH ile mücadelede diğer bir yöntem MH’ye genetik olarak dirençli tavukların yetiştirilmesidir. Bu çalışmada, tavuklarda ENO1, TPT1 ve RBBP4 genlerinin MH’ye karşı dayanıklılığa katkı sağlayıp sağlamadığı allele özgü ekspresyon tekniği kullanılarak araştırılmıştır. Araştırmada, materyal olarak MH’ye dayanıklı (hat 6) ve duyarlı (hat 7) tavuk hatlarının resiprokal melezlenmesi sonucunda elde edilen F1 dölleri kullanılmıştır. Tavukların Bursa fabricius, timus ve dalak organlarından RNA izole edilmiş ve pirosekanslama yöntemi ile her bir allelin ekspresyon seviyesi belirlenmiştir. Araştırma sonuçları, TPT1 ve RBBP4 genlerinin cis-acting elemente sahip olduğunu, ancak bu cis-acting elementlerin MH’na karşı direnç oluşturmada rol oynamadığını ortaya koymuştur.

References

  • Bacon L D & Witter R L (1994a). Serotype specificity of B-Haplotype influence on the relative efficacy of Marek’s disease virus. Avian Diseases 38: 65-71
  • Bacon L D & Witter R L (1994b). B-haplotype influence on the relative efficacy of Marek’s disease vaccines in commercial chickens. Poultry Science 73: 481-487
  • Bray N J, Buckland P R, Owen M J & O’Donovan M C (2003). Cis-acting variation in the expression of a high proportion of genes in human brain. Human Genetics 113: 149–153
  • Calnek B W (1998). Lymphomagenesis in Marek’s disease. Avian Pathology 27: 54-64
  • Cheng H H (2003). Selection for disease resistance: Molecular genetics techniques. In: W M Muir & S E Aggrey (Eds), Poultry Genetics, Breeding and Biotechnology, CABI Publishing, Trowbridge, UK, pp. 385-398
  • Cheng H H, Zhang Y & Muir W M (2007). Evidence for widespread epistatic interactions influencing Marek’s disease virus viremia levels in chicken. Cytogenetic and Genome Research 117: 313–318
  • Cheung V G, Nayak R R, Wang I X, Elwyn S, Cousins S M, Morley M & Spielman R S (2010). Polymorphic cis- and transregulation of human gene expression. PLoS Biology 8(9): e1000480
  • Cowles C R, Hirschhorn J N, Altshuler D & Lander E S (2002). Detection of regulatory variation in mouse genes. Nature Genetics 32: 432–437
  • Havenstein G B, Ferket P R & Qureshi M A (2003). Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science 82: 1509-1518
  • Lee L F, Powell P C, Rennie M, Ross L J N & Payne L N (1981). Nature of genetic resistance to Marek’s disease in chickens. Journal of the National Cancer Institute 66: 789-796
  • Liu H C, Kung H J, Fulton J E, Morgan R W & Cheng H H (2001). Growth hormone interacts with the Marek’s disease virus SORF2 protein and is associated with disease resistance in chicken. Proceedings of the National Academy of Science 98: 9203–9208
  • Liu H C, Niikura M, Fulton J & Cheng H H (2003). Identification of chicken stem lymphocyte antigen 6 complex, locus E (LY6E, alias SCA2) as a putative Marek’s disease resistance gene via a virus-host protein interaction screen. Cytogenetic and Genome Research 102: 304–308
  • MacEachern S, Muir W M, Crosby S D & Cheng H H (2012). Genome-wide identification and quantification of cis-and trans-regulated genes responding to Marek’s disease virus infection via analysis of allele- specific expression. Frontiers in Genetics 2: 113
  • Marek J (1907). Mutiple Nervenentzundung (Polyneuritis) bei Huhnern. Deutsche Tierarztliche Wochenschrift 15: 417-421
  • Meydan H, Yildiz M A, Dodgson J B & Cheng H H (2011). Allele-specific expression analysis reveals CD79B has a cis-acting regulatory element that responds to Marek’s disease virus infection in chickens. Poultry Science 90: 1206–1211
  • Nair V, Jones C R & Gough R E (2008). Viral Diseases. In: D J Alexander (Ed), Poultry Diseases, Saunders Elsevier, Chine, pp. 258-275
  • Neer E J, Schmidt C J, Nambudripad R & Smith T F (1994). The ancient regulatory-protein family of WD- repeat proteins. Nature 371(6495): 297-300
  • Niikura M, Liu H C, Dodgson J B & Cheng H H (2004). A comprehensive screen for chicken proteins that interact with proteins unique to virulent strains of Marek’s disease virus. Poultry Science 83: 1117–1123
  • Osterrieder N, Kamil J P, Schumacher D, Tischer B K & Trap S (2006). Marek’s disease virus: from miasma to model. Nature Review Microbiology 4: 283-294
  • Perumbakkam S, Muir W M, Black-Pyrkosz A, Okimoto R & Cheng H H (2013). Comparison and contrast of genes and biological pathways responding to Marek’s disease virus infection using allele-specific expression and differential expression in broiler and layer chickens. BMC Genomics 14: 64
  • Purchase H G (1985). Clinical disease and its economic impact. In: L N Payne (Ed), Marek’s Disease, Scientific Basis and Methods of Control. Martinus Nijhoff Publishing, Boston, pp. 17-42
  • Purchase H G & Okazaki W (1971). Effect of vaccination with herpesvirus of turkeys (HVT) on horizontal spread of Marek’s disease herpesvirus. Avian Disease 15: 391-397
  • Schat K A, Calnek B W, Fabricant J & Abplanalp H (1981). Influence of oncogenicity of Marek’ disease virus on evaluation of genetic resistance. Poultry Science 60: 2559-2566
  • Schat K A, Chen C L H, Calnek B W & Char D (1991). Transformation of T-lymphocyte subsets by Marek’s disease herpesvirus. Journal of Virology 65: 1408- 1413
  • Serre D, Gurd S, Ge B, Sladek R, Sinnett D, Harmsen E, Bibikova M, Chudin E, Barker D L, Dickinson T, Fan J B & Hudson T J (2008). Differential allelic expression in the human genome: A robust approach to identify genetic and epigenetic cis-acting mechanisms regulating gene expression. PLoS Genetics 4(2): e1000006.
  • Stamatoyannopoulos J A (2004). The genomics of gene expression. Genomics 84: 449-457
  • Tanaka M, Maeda K & Nakashima K (1995). Chicken alpha-enolase but not beta-enolase has a Src- dependent tyrosine-phosphorylation site: cDNA cloning and nucleotide sequence analysis. Journal of Biochemistry 117: 554-559
  • Vallejo R L, Bacon L D, Liu H C, Witter R L, Groenen M A M, Hillel J & Cheng H H (1998). Genetic mapping of quantitative trait loci affecting susceptibility to Marek’s disease virus induced tumors in F2 intercross chickens. Genetics 148: 349-360
  • Witter R L, Sharma J M & Fadly A M (1980). Pathogenicity of variants Marek’s disease isolates in vaccinated and unvaccinated chickens. Avian Disease 24: 210-232
  • Witter R L (1997). Increased virulence of Marek’s disease virus field isolates. Avian Diseases 41: 149-163
  • Yan H, Yuan W, Velculescu V E, Vogelstein B & Kinzler K W (2002). Allelic variation in human gene expression. Science 297: 1143
  • Yonash N, Bacon L D, Witter R L & Cheng H H (1999). High resolution mapping and identification of new quantitative trait loci (QTL) affecting susceptibility to Marek’s disease. Animal Genetics 30: 126-135
  • Yubero N, Esteso G, Cardona H, Morera L, Garrido J J & Barbancho M (2009). Molecular cloning, expression analysis and chromosome localization of the Tpt1 gene coding for the pig translationally controlled tumor protein (TCTP). Molecular Biology Reports 36: 1957–1965
There are 33 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Hasan Meydan

Mehmet Yıldız

Hans Cheng This is me

Publication Date December 15, 2015
Submission Date March 14, 2015
Published in Issue Year 2015

Cite

APA Meydan, H., Yıldız, M., & Cheng, H. (2015). Tavuklarda Marek Hastalığı’na Karşı Dirençli Genlerin SNP Genetik Markerlerinden Yararlanılarak Belirlenmesi. Journal of Agricultural Sciences, 21(4), 449-458. https://doi.org/10.1501/Tarimbil_0000001348

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).