Research Article
BibTex RIS Cite

Dissection of Barley Landraces Originated From Twelve Different

Year 2015, , 420 - 430, 12.08.2015
https://doi.org/10.1501/Tarimbil_0000001345

Abstract

Landraces, as an important source of genetic diversity, are important for improvement of crop species. Investigating of genetic diversity among landraces is necessary to conserve genetic resources and develop future strategies on barley breeding. In this study, genetic diversity in barley landraces originating from twelve countries was studied using simple sequence repeat (SSR) markers. Sixteen SSR markers belong to the seven barley linkage groups revealed high genetic diversity. A total of 92 polymorphic alleles were scored and the number of alleles ranged from 1 to 7 per locus, with an average of 5.75. Genetic diversity was the highest in landraces from Turkey (0.66 ± 0.13) and the lowest in those from Ukraine (0.38 ± 0.24). While the highest percentage of polymorphic loci was found for landraces from Germany, Netherland, Russia, Turkey and USA as 100%, the lowest one was in England with 75%. Clustering analysis of landraces divided them into four main groups. The results provided additional genetic information about the barley landraces from different countries for future breeding process.

References

  • Ahmed M (2002). Assessment of genomic diversity among wheat genotypes as determined by simple sequence repeats. Genome 45(4): 646-651
  • Badr A, Muller K, Schafer-Pregl R, El Rabey H, Effgen S, Ibrahim H H, Pozzi C, Rohde W & Salamini F (2000). On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology Evolution 17(4): 499-510
  • Becher S A, Steinmetz K, Weising K, Boury S, Peltier D, Renou J P, Kahl G & Wolff K (2000). Microsatellites for cultivar identification in Pelargonium. Theoretical and Applied Genetics 101(4): 643-651
  • Dizkirici A, Guren H E, Onde S, Temel F, Akar T, Budak H & Kaya Z (2008). Microsatellite (SSR) variation in barley germplasm and its potential use for marker assisted selection in scald resistance breeding. International Journal of Integrative Biology 4(1): 9-15
  • Fu Y & Horbach B (2012). Genetic diversity in a core subset of wild barley germplasm. Diversity 4(2): 239- 257
  • Hagenblad J, Zie J & Leino M W (2012). Exploring the population genetics of genebank and historical landrace varieties. Genetics Resources and Crop Evolution 59(6): 1185-1199
  • Hokanson S C, Szewc-McFadden A K, Lamboy W F & McFerson J R (1998). Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica borkh. core subset collection. Theoretical and Applied Genetics 97(5): 671-683
  • Hu X, Wang J, Lu P & Zhang H (2009). Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. Journal of Genetics and Genomics 36(8): 491-500
  • Jilal A (2011). Assessment of genetically diverse international barley germplasm for development of food product applications. Dissertation, Southern Cross University
  • Jones H, Lister D L, Bower M A, Leigh F J, Smith L M J & Jones M K (2008). Approaches and constraints of using existing landraces and extant plant material to understand agricultural spread in prehistory. Plant Genetic Resources 6(2): 98-112
  • Kishore G, Gupta S & Pandey A (2012). Assessment of population genetic diversity of Fagopyrum tataricum using SSR molecular marker. Biochemical Systematic and. Ecology 43: 32-41
  • Leišová L, Kučera L & DotLačiL L (2007). Genetic resources of barley and oat characterized by microsatellites. Czech Journal of Genetics and Plant Breeding 43(3): 97-104
  • Li C D, Rossnagel B G & Scoles G J (2000). The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theoretical and Applied Genetics 101(8): 1259-1268
  • Liu Z W, Biyashev R M & Saghai-Maroof M A (1996). Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theoretical and Applied Genetics 93: 869-876
  • Lopes M S, Sefc K M, Eiras D, Steinkellner E, Laimer da Câmara Machado H M & da Câmara Machad A (1999). The use of microsatellites for germplasm management in a Portuguese grapevine collection. Theoretical and Applied Genetics 99(3-4): 733-739
  • Macaulay M, Ramsay L, Powell W & Waugh R (2001). A representative, highly informative ‘genotyping set’ of barley SSRs. Theoretical and Applied Genetics 102(6-7): 801-809
  • Malysheva-Otto, L, Ganal M W, Law J R, Reeves J C & Röder M S (2007). Temporal trends of genetic diversity in European barley cultivars (Hordeum vulgare L.). Molecular Breeding 20(4): 309-322
  • Matus I A & Hayes P M (2002). Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45(6): 1095-1106
  • Morrell P L & Clegg M T (2006). Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proceedings of National Academy of Sciences of the United States of America 104(9): 3289-3294
  • Nei M & Li W H (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of National Academy of Sciences 76(10): 5269-5273
  • Peeters J P (1988). The emergence of new centres of diversity: evidence from barley. Theoretical and Applied Genetics 76(1): 17-24
  • Prasad M, Varshney R K, Roy J K, Balyan H S & Gupta P K (2000). The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theoretical and Applied Genetics 100(3-4): 584-592
  • Rohlf F J (1993). NTSYS-pc version 1.80. Distribution by Exeter Software, Setauket, NewYork
  • Saavedra J, Silva T A, Mora F & Scapim C A (2013). Bayesian analysis of the genetic structure of a Brazilian popcorn germplasm using data from simple sequence repeats (SSR). Chilean Journal of Agricultural Research 73: 2
  • Saghai-Maroof M A, Biyashev R M, Yang G P, Zhang Q & Allard R W (1994). Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal location, and population dynamics. Proceedings of National Academy of Sciences 91(12): 5466-5470
  • Schuster I, Elisa V S N, Silva G J, Franco F A & Marchioro V S (2009). Genetic variability in Brazilian wheat cultivars assessed by microsatellite markers. Genetics and Molecular Biology 32(3): 557-563
  • Senior M L, Murphy J P, Goodman M M & Stuber C W (1998). Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Science 38: 1088-1098
  • Sipahi H (2011). Genetic screening of Turkish barley genotypes using simple sequence repeat markers. Journal of Cell and Molecular Biology 9(2): 19-26
  • Sneath P H A & Sokal R R (1973). Numerical Taxonomy. Freeman, San Francisco
  • Struss D & Plieske J (1998). The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical and Applied Genetics 37(1- 2): 2308-2315
  • Sun D, Ren W, Sun G & Peng J (2011). Molecular diversity and association mapping of quantitative traits in Tibetan wild and worldwide originated barley (Hordeum vulgare L.) germplasm. Euphytica 178(1): 31-43
  • Varshney R K, Chabane K, Hendre P, Aggarwal R K & Graner A (2007). Comparative assessment of EST- SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Science 173(6): 638-649
  • Veasey E A, Borges A, Rosa M S, Queiroz-Silva J R, Bressan E A & Peroni N (2008). Genetic diversity in Brazilian sweet potato (Ipomoea batatas (L.) Lam., Solanales, Convolvulaceae) landraces assessed with microsatellite markers. Genetics and Molecular Biology 31(3): 725-733
  • Weber J L (1990). Informativeness of human (dC-dA) n (dG-dT)n polymorphisms. Genomics 7(4): 524-530
  • Westman A L & Kresovich S (1999). Simple sequence repeat (SSR)-based marker variation in Brassica nigra genebank accessions and weed populations. Euphytica 109(2): 85-92
  • Yang S, Wei Y, Qi P & Zheng Y (2008). Sequence polymorphisms and phylogenetic relationships of hina gene in wild barley from Tibet, China. Agricultural Sciences in China. 7(7): 796-803
  • Yeh, F, Yang C & Boyle T (1999). POPGENE Version1.32: Microsoft Window-based Freeware for Population Genetic Analysis. University of Alberta, Edmonton
  • Zhang P, Dreisigacker S, Buerkert A, Alkhanjari S, Melchinger A E, Warburton M L (2006). Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers. Genetic Resources and Crop Evolution 53(7): 1351-1360
  • Zeven A C (1998). Landraces: A review of definitions and classifications. Euphytica 104(2): 127-139

Basit Sıra Tekrarı İşaretleyicilerini Kullanarak On İki Farklı Ülkeden Köken Alan Arpa Yerel Çeşitlerinin İncelenmesi

Year 2015, , 420 - 430, 12.08.2015
https://doi.org/10.1501/Tarimbil_0000001345

Abstract

Genetik çeşitliliğin önemli bir kaynağı olan yerel çeşitler, tahıl türlerinin geliştirilmesi için önemlidirler. Yerel çeşitler
arasındaki genetik çeşitliliğin araştırılması, genetik kaynakları koruma ve arpa ıslahında gelecek stratejileri geliştirme
için önemlidir. Bu çalışmada, on iki ülkeden köken alan arpa yerel çeşitlerindeki genetik çeşitlilik, basit sıra tekrarları
(BST) işaretleyicileri kullanılarak çalışılmıştır. Yedi arpa bağlantı grubuna ait onaltı BST işaretleyicisi yüksek genetik
çeşitliği ortaya çıkarmıştır. Toplamda 92 polimorfik allel sayılmış ve allel sayısı 5.75 ortalama ile lokus başına 1 ila
7 arasında olmuştur. Genetik çeşitlilik en yüksek Türkiye yerel çeşitlerinde (0.66 ± 0.13), en düşük Ukrayna yerel
çeşitlerinde (0.38 ± 0.24) belirlenmiştir. Polimorfik lokus yüzdesi, Almanya, Holanda, Rusya, Türkiye ve Amerika’da en
yüksek yani % 100 iken, % 75 ile en düşük İngiltere’de bulunmuştur. Yerel çeşitlerin kümeleme analizleri onları dört ana
gruba ayırmıştır. Sonuçlar gelecekteki ıslah çalışmaları için farklı ülkelerden arpa yerel çeşitleri hakkında ilave genetik
bilgiler sağlamıştır.

References

  • Ahmed M (2002). Assessment of genomic diversity among wheat genotypes as determined by simple sequence repeats. Genome 45(4): 646-651
  • Badr A, Muller K, Schafer-Pregl R, El Rabey H, Effgen S, Ibrahim H H, Pozzi C, Rohde W & Salamini F (2000). On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology Evolution 17(4): 499-510
  • Becher S A, Steinmetz K, Weising K, Boury S, Peltier D, Renou J P, Kahl G & Wolff K (2000). Microsatellites for cultivar identification in Pelargonium. Theoretical and Applied Genetics 101(4): 643-651
  • Dizkirici A, Guren H E, Onde S, Temel F, Akar T, Budak H & Kaya Z (2008). Microsatellite (SSR) variation in barley germplasm and its potential use for marker assisted selection in scald resistance breeding. International Journal of Integrative Biology 4(1): 9-15
  • Fu Y & Horbach B (2012). Genetic diversity in a core subset of wild barley germplasm. Diversity 4(2): 239- 257
  • Hagenblad J, Zie J & Leino M W (2012). Exploring the population genetics of genebank and historical landrace varieties. Genetics Resources and Crop Evolution 59(6): 1185-1199
  • Hokanson S C, Szewc-McFadden A K, Lamboy W F & McFerson J R (1998). Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica borkh. core subset collection. Theoretical and Applied Genetics 97(5): 671-683
  • Hu X, Wang J, Lu P & Zhang H (2009). Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. Journal of Genetics and Genomics 36(8): 491-500
  • Jilal A (2011). Assessment of genetically diverse international barley germplasm for development of food product applications. Dissertation, Southern Cross University
  • Jones H, Lister D L, Bower M A, Leigh F J, Smith L M J & Jones M K (2008). Approaches and constraints of using existing landraces and extant plant material to understand agricultural spread in prehistory. Plant Genetic Resources 6(2): 98-112
  • Kishore G, Gupta S & Pandey A (2012). Assessment of population genetic diversity of Fagopyrum tataricum using SSR molecular marker. Biochemical Systematic and. Ecology 43: 32-41
  • Leišová L, Kučera L & DotLačiL L (2007). Genetic resources of barley and oat characterized by microsatellites. Czech Journal of Genetics and Plant Breeding 43(3): 97-104
  • Li C D, Rossnagel B G & Scoles G J (2000). The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theoretical and Applied Genetics 101(8): 1259-1268
  • Liu Z W, Biyashev R M & Saghai-Maroof M A (1996). Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theoretical and Applied Genetics 93: 869-876
  • Lopes M S, Sefc K M, Eiras D, Steinkellner E, Laimer da Câmara Machado H M & da Câmara Machad A (1999). The use of microsatellites for germplasm management in a Portuguese grapevine collection. Theoretical and Applied Genetics 99(3-4): 733-739
  • Macaulay M, Ramsay L, Powell W & Waugh R (2001). A representative, highly informative ‘genotyping set’ of barley SSRs. Theoretical and Applied Genetics 102(6-7): 801-809
  • Malysheva-Otto, L, Ganal M W, Law J R, Reeves J C & Röder M S (2007). Temporal trends of genetic diversity in European barley cultivars (Hordeum vulgare L.). Molecular Breeding 20(4): 309-322
  • Matus I A & Hayes P M (2002). Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45(6): 1095-1106
  • Morrell P L & Clegg M T (2006). Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proceedings of National Academy of Sciences of the United States of America 104(9): 3289-3294
  • Nei M & Li W H (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of National Academy of Sciences 76(10): 5269-5273
  • Peeters J P (1988). The emergence of new centres of diversity: evidence from barley. Theoretical and Applied Genetics 76(1): 17-24
  • Prasad M, Varshney R K, Roy J K, Balyan H S & Gupta P K (2000). The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theoretical and Applied Genetics 100(3-4): 584-592
  • Rohlf F J (1993). NTSYS-pc version 1.80. Distribution by Exeter Software, Setauket, NewYork
  • Saavedra J, Silva T A, Mora F & Scapim C A (2013). Bayesian analysis of the genetic structure of a Brazilian popcorn germplasm using data from simple sequence repeats (SSR). Chilean Journal of Agricultural Research 73: 2
  • Saghai-Maroof M A, Biyashev R M, Yang G P, Zhang Q & Allard R W (1994). Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal location, and population dynamics. Proceedings of National Academy of Sciences 91(12): 5466-5470
  • Schuster I, Elisa V S N, Silva G J, Franco F A & Marchioro V S (2009). Genetic variability in Brazilian wheat cultivars assessed by microsatellite markers. Genetics and Molecular Biology 32(3): 557-563
  • Senior M L, Murphy J P, Goodman M M & Stuber C W (1998). Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Science 38: 1088-1098
  • Sipahi H (2011). Genetic screening of Turkish barley genotypes using simple sequence repeat markers. Journal of Cell and Molecular Biology 9(2): 19-26
  • Sneath P H A & Sokal R R (1973). Numerical Taxonomy. Freeman, San Francisco
  • Struss D & Plieske J (1998). The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical and Applied Genetics 37(1- 2): 2308-2315
  • Sun D, Ren W, Sun G & Peng J (2011). Molecular diversity and association mapping of quantitative traits in Tibetan wild and worldwide originated barley (Hordeum vulgare L.) germplasm. Euphytica 178(1): 31-43
  • Varshney R K, Chabane K, Hendre P, Aggarwal R K & Graner A (2007). Comparative assessment of EST- SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Science 173(6): 638-649
  • Veasey E A, Borges A, Rosa M S, Queiroz-Silva J R, Bressan E A & Peroni N (2008). Genetic diversity in Brazilian sweet potato (Ipomoea batatas (L.) Lam., Solanales, Convolvulaceae) landraces assessed with microsatellite markers. Genetics and Molecular Biology 31(3): 725-733
  • Weber J L (1990). Informativeness of human (dC-dA) n (dG-dT)n polymorphisms. Genomics 7(4): 524-530
  • Westman A L & Kresovich S (1999). Simple sequence repeat (SSR)-based marker variation in Brassica nigra genebank accessions and weed populations. Euphytica 109(2): 85-92
  • Yang S, Wei Y, Qi P & Zheng Y (2008). Sequence polymorphisms and phylogenetic relationships of hina gene in wild barley from Tibet, China. Agricultural Sciences in China. 7(7): 796-803
  • Yeh, F, Yang C & Boyle T (1999). POPGENE Version1.32: Microsoft Window-based Freeware for Population Genetic Analysis. University of Alberta, Edmonton
  • Zhang P, Dreisigacker S, Buerkert A, Alkhanjari S, Melchinger A E, Warburton M L (2006). Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers. Genetic Resources and Crop Evolution 53(7): 1351-1360
  • Zeven A C (1998). Landraces: A review of definitions and classifications. Euphytica 104(2): 127-139
There are 39 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Hülya Sipahi

Ayşen Yumurtacı

Publication Date August 12, 2015
Submission Date May 7, 2015
Published in Issue Year 2015

Cite

APA Sipahi, H., & Yumurtacı, A. (2015). Basit Sıra Tekrarı İşaretleyicilerini Kullanarak On İki Farklı Ülkeden Köken Alan Arpa Yerel Çeşitlerinin İncelenmesi. Journal of Agricultural Sciences, 21(3), 420-430. https://doi.org/10.1501/Tarimbil_0000001345

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).