Research Article
BibTex RIS Cite
Year 2019, , 498 - 507, 05.12.2019
https://doi.org/10.15832/ankutbd.457850

Abstract

References

  • Akpınar AE, Koçal H, Ergül A, Kazan K, Selli ME, Bakır M, Aslantas Ş, Kaymak S & Sarıbas R (2010). SSR-based molecular analysis of economically important Turkish apricot cultivars. Genetics and Molecular Research 9: 324-332.
  • Bourguiba H, Khadari B, Krichen L, Trifi-Farah N, Santoni S & Audergon JM (2010). Grafting versus seed propagated apricot populations: two main gene pools in Tunisia evidenced by SSR markers and model-based Bayesian clustering. Genetica 138: 1023-1032.
  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E & Testoline R (1999). AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch] isolation, characterization and cross-species amplification in Prunus. Theoretical and Applied Genetics 99: 65-72.
  • Dumanoğlu H, Bakır M, Ernim C & Macit T (2018). Evaluation of wild apricot (Prunus armeniaca L.) genetic materials around Nevşehir province for late blooming, resistance to late spring frosts, large fruit size and late fruit maturity. The Final Report of Scientific Research and Technological Research Project (114O279). TUBITAK, Ankara.
  • Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genetic Resources and Crop Evolution 51: 419-435.
  • Gupta PK, Balyan HS, Sharma PC & Ramesh B (1996). Microsatellites in plants: a new class of molecular markers. Current Science 70: 45–54.
  • Gürcan K, Öcal N, Yılmaz KU, Ullahe S, Erdogan A & Zengin Y (2015). Evaluation of Turkish apricot germplasm using SSR markers: Genetic diversity assessment and search for Plum pox virus resistance alleles. Scientia Horticulturae 193: 155-164.
  • Hagen LS, Chaib J, Fady B, Decroocq V, Lambert JP & Audergon JM (2004). Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Molecular Ecology Notes 4: 742-745. Hormaza JI (2002). Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theoretical and Applied Genetics 104: 321-328.
  • Kostina KF (1969). The use of varietal resources of apricots for breeding. Trudy Nikitiskogo Botanicheskogo Sada 40: 45-63.
  • Layne REC, Bailey CH & Hough LF (1996). Apricots. In: Janick J & Moore JN (eds.) Fruit Breeding. Tree and Tropical Fruits. Jhon Viley & Sons, Inc. pp.79-111. New York.
  • Lefort F, Lally M, Thompson D & Douglas GC (1998). Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tuallynally, Ireland. Silvae Genetica 47: 5-6.
  • Litt M & Luty JA (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. The American Society of Human Genetics 44: 397-401.
  • Liu HU, Liu J, Wang Z, Ma LY, Wang SQ, Lin XG, Wu RL & Pang XM (2013). Development and characterization of microsatellite markers in Prunus sibirica (Rosaceae). Applications in Plant Sciences 1(3): apps.1200074.
  • Liu K & Muse SV (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129.
  • Messina R, Lain O, Marrazzo MT, Cipriani G & Testolin R (2004). New set of microsatellite loci isolated in apricot. Moleculer Ecology Notes 4: 432-434.
  • Murathan ZT, Kafkas S, Asma BM & Topçu H (2017). S allele identification and genetic diversity analysis of apricot cultivars. The Journal of Horticultural Science and Biotechnology 92: 251-260.
  • Nei M (1973). Analysis of gene diversity in subdivided populations. The Proceedings of the National Academy of Science 70: 3321-3323.
  • Romero C, Pedryc A, Munoz V, Llacer G & Badenes ML (2003). Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46: 244-252.
  • Ruthner S, Pedryc A, Krska B, Romero C & Badenes ML (2006). Molecular characterization of apricot (Prunus armeniaca L.) cultivars using cross species SSR amplification with peach primers. International Journal of Horticultural Science 12: 53-57.
  • Sanchez-Perez R, Ruiz D, Dicent F, Egea J & Martínez-Gómez P (2005). Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Scientia Horticulturae 103: 305-315.
  • Schuelke M (2000). An economic method for the fluorescent labelling of PCR fragments. Nature Biotechnology 18: 233-234.
  • Tamura K, Dudley J, Nei M & Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599.
  • TUIK (2017). Number of wild apricot trees in Nevşehir. Turkish Statistical Institute. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr.
  • Ullah S, Aish M, Iqbal H, Hafeez R & Muhammad ZH (2017). Genetic analysis of economically important apricot cultivars in Gilgit Baltistan based on SSR molecular markers. Romanian Biotechnological Letters 22: 12456-12463.
  • Vavilov NI (1951). The Origin, variation, immunity and breeding of cultivated plants (Translated by S. K. Chestitee). Chronica Botonica 13: 1-366.
  • Wang Z, Kang M, Liu H, Gao J, Zhang Z, Li Y, Wu R & Pang X (2014). High-level genetic diversity and complex population structure of Siberian apricot (Prunus sibirica L.) in China as revealed by nuclear SSR markers. PLoS One 9, e87381. doi:10.1371/journal.pone. 0087381.
  • Yamamoto T, Mochida K, Imai T, Shi YZ, Ogiwara T & Hayashi T (2002). Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Molecular Ecology Notes 2: 298-301.
  • Zhebentyayeva TN, Reighard GL, Gorina VM & Abbott AG (2003). Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theoretical and Applied Genetics 106: 435-444.
  • Zhebentyayeva T, Ledbetter CA, Burgos L & Llàcer G (2012). Apricot. In: Badenes ML & Byrne PH (eds.) Fruit Breeding, Springer, pp. 415-458, New York.

Characterization of Wild Apricot (Prunus armeniaca L.) Genotypes Selected from Cappadocia Region (Nevşehir-Turkey) by SSR Markers

Year 2019, , 498 - 507, 05.12.2019
https://doi.org/10.15832/ankutbd.457850

Abstract

Cappadocia region of Anatolia hosts the third largest wild apricot population in Turkey. The objective of the study was to characterize 44 wild apricot genotypes selected from Cappadocia Region (Nevşehir-Turkey) as prominent with their late flowering, resistance to spring late frosts, large fruit sizes and/or late fruit ripening characteristics and 5 reference apricot cultivars (‘Hacıhaliloğlu’, ‘Kabaaşı’, ‘Hasanbey’, ‘Aprikoz’ and ‘Levent’) with SSR (simple sequence repeats) markers. A total of 16 SSR primers were used and 13 of them were successfully amplified. Total number of alleles was

107, average number of alleles was 8.23; average He and Ho values were 0.722 and 0.669, respectively. Polymorphism information content (PIC) values varied between 0.471 and 0.845. There was a quite high genetic diversity among wild apricot genotypes that genetic similarity values varied between 12 and 96%. Homonymous and synonymous genotypes were not encountered.



References

  • Akpınar AE, Koçal H, Ergül A, Kazan K, Selli ME, Bakır M, Aslantas Ş, Kaymak S & Sarıbas R (2010). SSR-based molecular analysis of economically important Turkish apricot cultivars. Genetics and Molecular Research 9: 324-332.
  • Bourguiba H, Khadari B, Krichen L, Trifi-Farah N, Santoni S & Audergon JM (2010). Grafting versus seed propagated apricot populations: two main gene pools in Tunisia evidenced by SSR markers and model-based Bayesian clustering. Genetica 138: 1023-1032.
  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E & Testoline R (1999). AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch] isolation, characterization and cross-species amplification in Prunus. Theoretical and Applied Genetics 99: 65-72.
  • Dumanoğlu H, Bakır M, Ernim C & Macit T (2018). Evaluation of wild apricot (Prunus armeniaca L.) genetic materials around Nevşehir province for late blooming, resistance to late spring frosts, large fruit size and late fruit maturity. The Final Report of Scientific Research and Technological Research Project (114O279). TUBITAK, Ankara.
  • Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genetic Resources and Crop Evolution 51: 419-435.
  • Gupta PK, Balyan HS, Sharma PC & Ramesh B (1996). Microsatellites in plants: a new class of molecular markers. Current Science 70: 45–54.
  • Gürcan K, Öcal N, Yılmaz KU, Ullahe S, Erdogan A & Zengin Y (2015). Evaluation of Turkish apricot germplasm using SSR markers: Genetic diversity assessment and search for Plum pox virus resistance alleles. Scientia Horticulturae 193: 155-164.
  • Hagen LS, Chaib J, Fady B, Decroocq V, Lambert JP & Audergon JM (2004). Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Molecular Ecology Notes 4: 742-745. Hormaza JI (2002). Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theoretical and Applied Genetics 104: 321-328.
  • Kostina KF (1969). The use of varietal resources of apricots for breeding. Trudy Nikitiskogo Botanicheskogo Sada 40: 45-63.
  • Layne REC, Bailey CH & Hough LF (1996). Apricots. In: Janick J & Moore JN (eds.) Fruit Breeding. Tree and Tropical Fruits. Jhon Viley & Sons, Inc. pp.79-111. New York.
  • Lefort F, Lally M, Thompson D & Douglas GC (1998). Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tuallynally, Ireland. Silvae Genetica 47: 5-6.
  • Litt M & Luty JA (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. The American Society of Human Genetics 44: 397-401.
  • Liu HU, Liu J, Wang Z, Ma LY, Wang SQ, Lin XG, Wu RL & Pang XM (2013). Development and characterization of microsatellite markers in Prunus sibirica (Rosaceae). Applications in Plant Sciences 1(3): apps.1200074.
  • Liu K & Muse SV (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129.
  • Messina R, Lain O, Marrazzo MT, Cipriani G & Testolin R (2004). New set of microsatellite loci isolated in apricot. Moleculer Ecology Notes 4: 432-434.
  • Murathan ZT, Kafkas S, Asma BM & Topçu H (2017). S allele identification and genetic diversity analysis of apricot cultivars. The Journal of Horticultural Science and Biotechnology 92: 251-260.
  • Nei M (1973). Analysis of gene diversity in subdivided populations. The Proceedings of the National Academy of Science 70: 3321-3323.
  • Romero C, Pedryc A, Munoz V, Llacer G & Badenes ML (2003). Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46: 244-252.
  • Ruthner S, Pedryc A, Krska B, Romero C & Badenes ML (2006). Molecular characterization of apricot (Prunus armeniaca L.) cultivars using cross species SSR amplification with peach primers. International Journal of Horticultural Science 12: 53-57.
  • Sanchez-Perez R, Ruiz D, Dicent F, Egea J & Martínez-Gómez P (2005). Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Scientia Horticulturae 103: 305-315.
  • Schuelke M (2000). An economic method for the fluorescent labelling of PCR fragments. Nature Biotechnology 18: 233-234.
  • Tamura K, Dudley J, Nei M & Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599.
  • TUIK (2017). Number of wild apricot trees in Nevşehir. Turkish Statistical Institute. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr.
  • Ullah S, Aish M, Iqbal H, Hafeez R & Muhammad ZH (2017). Genetic analysis of economically important apricot cultivars in Gilgit Baltistan based on SSR molecular markers. Romanian Biotechnological Letters 22: 12456-12463.
  • Vavilov NI (1951). The Origin, variation, immunity and breeding of cultivated plants (Translated by S. K. Chestitee). Chronica Botonica 13: 1-366.
  • Wang Z, Kang M, Liu H, Gao J, Zhang Z, Li Y, Wu R & Pang X (2014). High-level genetic diversity and complex population structure of Siberian apricot (Prunus sibirica L.) in China as revealed by nuclear SSR markers. PLoS One 9, e87381. doi:10.1371/journal.pone. 0087381.
  • Yamamoto T, Mochida K, Imai T, Shi YZ, Ogiwara T & Hayashi T (2002). Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Molecular Ecology Notes 2: 298-301.
  • Zhebentyayeva TN, Reighard GL, Gorina VM & Abbott AG (2003). Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theoretical and Applied Genetics 106: 435-444.
  • Zhebentyayeva T, Ledbetter CA, Burgos L & Llàcer G (2012). Apricot. In: Badenes ML & Byrne PH (eds.) Fruit Breeding, Springer, pp. 415-458, New York.
There are 29 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Melike Bakır 0000-0003-3465-1453

Hatice Dumanoğlu 0000-0002-7099-7630

Veli Erdoğan 0000-0003-0813-898X

Cemil Ernim 0000-0003-0813-898X

Tahir Macit This is me 0000-0003-0813-898X

Publication Date December 5, 2019
Submission Date September 6, 2018
Acceptance Date October 31, 2018
Published in Issue Year 2019

Cite

APA Bakır, M., Dumanoğlu, H., Erdoğan, V., Ernim, C., et al. (2019). Characterization of Wild Apricot (Prunus armeniaca L.) Genotypes Selected from Cappadocia Region (Nevşehir-Turkey) by SSR Markers. Journal of Agricultural Sciences, 25(4), 498-507. https://doi.org/10.15832/ankutbd.457850

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).