Research Article
BibTex RIS Cite

Çekerek Havzası Minimum Akım Serilerinin Frekans Analizi

Year 2005, , 72 - 78, 01.01.2005
https://doi.org/10.1501/Tarimbil_0000000496

Abstract

Kuraklık analizleri çalışmalarında en uygun olasılık dağılımının seçimi minimum akım istatistikleri açısından önemlidir. Bu çalışmanın amacı, Çekerek çayındaki üç akım gözlem istasyonunda ölçülen 7-günlük minimum akım serilerinin frekans analizi için uygun olasılık dağılımının çıkarılmasıdır. En düşük 7-günlük akım serileri her yılın 7günlük periyotları için günlük akım datasından oluşturuldu. 7-günlük akım, ardışık 7 günlük periyot içinde ölçülen en düşük akımdır. Seçilen olasılık dağılımlarının parametrelerinin tahmininde L-moment tekniği kullanıldı. Olasılık dağılımların performanslarını karşılaştırmak için MADI ve MSDI indisleri kullanıldı. Araştırma sonuçlara göre, en iyi performans genelleştirilmiş pareto GPA dağılımıyla elde edildi. Negatif değerler üreten dağılımlar elimine edildi. Gringorten formülünden elde edilen olasılık seviyelerine bağlı olarak pozitif değerler üreten dağılımlardan tahmin edilen akımlar log pearson 3 hariç % 75 den daha büyük olasılık seviyeleri için gerçek minimum akım değerlerini oldukça iyi temsil etmektedir. GPA dağılımına bağlı olarak 10 yıllık tekrarlanma aralığına sahip Q7,10 istatistikler, 1424, 1409 ve 1404 numaralı akım gözlem istasyonları için 0.29, 1.27 ve 2.11 m3/s olarak tahmin edildi

References

  • Anonim, 1970. Yeşilırmak Havzası Toprakları. Topraksu Genel Müdürlüğü Yayınları, Yayın no: 241, Ankara.
  • Chang, M., D. G. Boyer, 1975. Estimates of low flows using watershed and climatic parameters. Water Resources Research, 13 (6): 997-1001.
  • Durrans, S. R., S. Tomic, 1996. Regionalization of low-flow frequency estimates: An Alabama case study. Water Resources Bulletin, 32 (1): 23-37.
  • Fernandez, B., J. D. Salas, 1999. Return period and risk of hydrologic events: 1. Mathematical formulation. ASCE Journal of Hydrologic Engineering, 4 (4): 297-307.
  • Greenwood, J. A., J. M. Landwehr, N. C. Matalas and J. R. Wallis, 1979. Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research, 15 (5): 1049-1054.
  • Heo, J. H., J. H. Kim and J. D. Salas, 2001. Estimation of confidence intervals of quantiles for the weibull distribution. Journal of Stochastic Environmental Research and Risk Assessment, 15 (4): 284-309.
  • Hisdal, H., K. Stahl, L. M. Tallaksen and S. Demuth, 2001. Have streamflow droughts in Europe become more severe or frequent? International Journal of Climatology, 21: 317-333.
  • Hosking, J. R. M. 1990. L-Moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of The Royal Statistical Society Series B, 52 (1): 105-124.
  • Hosking, J. R. M., J. R. Wallis, 1997. Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, 224 p. USA.
  • Jain, D., V. P. Singh, 1987. Comparison of Some Flood Frequency Distributions Using Empirical Data. “ Ed. V.P. Singh. Hydrologic Frequency Modeling”, D. Reidel Publishing Company, p 467-485, The Netherlands.
  • Knapp, H. V., M. W. Myers, 1999. Fox River Streamflow Assessment Model: 1999 Update to The Hydrologic Analysis. Illinois State Water Survey Contract Report 649, 85 p, Illinois, USA.
  • Kroll, C. N., R. M. Vogel, 2002. Probability distribution of low streamlow series in the United States. Journal of Hydrologic Engineering, 7 (2): 137-146.
  • Önöz, B., M. Bayazit, 1999. GEV-PWM model for distribution of minimum flows. Journal of Hydrologic Engineering, 4 (3): 289-292.
  • Pearson, C. P. 1995. Regional frequency analysis of low flows in New Zealand rivers. Journal of Hydrology, 30 (2): 53-64.
  • Riggs, H. C. 1980. Characteristics of low flows. Journal of Hydraulic Engineering, 106 (5): 717-731.
  • Smakhtin, V. Y., M. Toulouse, 1998. Relationships between low- flow characteristics of South African streams. Water SA, 24 (2): 107-112.
  • Stahl, K., S. Demuth, 1999. Linking streamflow drought to the occurrence of atmospheric circulation pattern. Hydrological Sciences Journal, 44 (3): 467-482.
  • Tasker, G. D. 1987. A comparison of methods for estimating low flow characteristics of streams. Water Resources Bulletin, 23 (6): 1077-1083.
  • Vogel, R. M., C. N. Kroll, 1989. Low-flow frequency analysis using probability-plot correlation coefficients. Journal of Water Resources Planning and Management, 115 (3): 338-357.
  • Vogel, R. M., I. Wilson, 1996. Probability distribution of annual, maximum, mean, and minimum streamflows in the United States. Journal of Hydrologic Engineering, 1 (2): 69-76.
  • Waltemeyer, S. D. 2002. Analysis of the magnitude and frequency of the 4-Day annual low flow and regression equations for estimating the 4-day, 3-year low-flow frequency at ungaged sites on unregulated streams in New Mexico. U.S. Department of the Interior, U.S. Geological Survey, Water Resources Investigation Report 01-4271, 22 p, New Mexico, USA.
  • Wilhite, D. A., M. H. Glantz, 1985. Understanding the drought phenomenon: The role of definitions. Water International, 10: 111-120, 1985.
  • Zelenhasic, E., 2002. On the extreme streamflow drought analysis. Water Resources Management, 16: 105-132.
  • Zelenhasic, E., A. Salvai, 1987. A method of streamflow drought analysis. Water Resources Research, 23 (1): 156-168.

Frequency Analysis of Low Flow Series from Çekerek Stream Basin

Year 2005, , 72 - 78, 01.01.2005
https://doi.org/10.1501/Tarimbil_0000000496

Abstract

The most true selection probability distribution is important to describe the low flow statistics for the studies related to drought analysis. The aim of this study is to derive appropriate probability distributions for frequency analysis of 7-day annual low flows at three gauging stations of the Çekerek Stream. The lowest 7-day flow series were constituted from daily flow data for 7-day periods of each year. A minimum 7-day flow is the lowest flow that occurred within a 7-consecutive day period. L-moment technique was used to predict the parameters of the selected distributions. Two goodness of fit indices, including MADI and MSDI, were used to compare the performances of the probability distributions for fitting. According to results, the best performance was obtained for generalized pareto GPA distribution. The distributions produced negative values were discarded. The predicted low flows obtained from the distributions that produced positive values except Log Pearson type three for empirical probability levels Gringorten formula sufficiently represent the actual low flows for probability levels higher than 75%. The statistics having reoccurrence interval of ten years Q7,10 based on GPA distribution were predicted as 0.29, 1.27 and 2.11 m3/s for gauging stations 1424, 1409 and 1404, respectively

References

  • Anonim, 1970. Yeşilırmak Havzası Toprakları. Topraksu Genel Müdürlüğü Yayınları, Yayın no: 241, Ankara.
  • Chang, M., D. G. Boyer, 1975. Estimates of low flows using watershed and climatic parameters. Water Resources Research, 13 (6): 997-1001.
  • Durrans, S. R., S. Tomic, 1996. Regionalization of low-flow frequency estimates: An Alabama case study. Water Resources Bulletin, 32 (1): 23-37.
  • Fernandez, B., J. D. Salas, 1999. Return period and risk of hydrologic events: 1. Mathematical formulation. ASCE Journal of Hydrologic Engineering, 4 (4): 297-307.
  • Greenwood, J. A., J. M. Landwehr, N. C. Matalas and J. R. Wallis, 1979. Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research, 15 (5): 1049-1054.
  • Heo, J. H., J. H. Kim and J. D. Salas, 2001. Estimation of confidence intervals of quantiles for the weibull distribution. Journal of Stochastic Environmental Research and Risk Assessment, 15 (4): 284-309.
  • Hisdal, H., K. Stahl, L. M. Tallaksen and S. Demuth, 2001. Have streamflow droughts in Europe become more severe or frequent? International Journal of Climatology, 21: 317-333.
  • Hosking, J. R. M. 1990. L-Moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of The Royal Statistical Society Series B, 52 (1): 105-124.
  • Hosking, J. R. M., J. R. Wallis, 1997. Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, 224 p. USA.
  • Jain, D., V. P. Singh, 1987. Comparison of Some Flood Frequency Distributions Using Empirical Data. “ Ed. V.P. Singh. Hydrologic Frequency Modeling”, D. Reidel Publishing Company, p 467-485, The Netherlands.
  • Knapp, H. V., M. W. Myers, 1999. Fox River Streamflow Assessment Model: 1999 Update to The Hydrologic Analysis. Illinois State Water Survey Contract Report 649, 85 p, Illinois, USA.
  • Kroll, C. N., R. M. Vogel, 2002. Probability distribution of low streamlow series in the United States. Journal of Hydrologic Engineering, 7 (2): 137-146.
  • Önöz, B., M. Bayazit, 1999. GEV-PWM model for distribution of minimum flows. Journal of Hydrologic Engineering, 4 (3): 289-292.
  • Pearson, C. P. 1995. Regional frequency analysis of low flows in New Zealand rivers. Journal of Hydrology, 30 (2): 53-64.
  • Riggs, H. C. 1980. Characteristics of low flows. Journal of Hydraulic Engineering, 106 (5): 717-731.
  • Smakhtin, V. Y., M. Toulouse, 1998. Relationships between low- flow characteristics of South African streams. Water SA, 24 (2): 107-112.
  • Stahl, K., S. Demuth, 1999. Linking streamflow drought to the occurrence of atmospheric circulation pattern. Hydrological Sciences Journal, 44 (3): 467-482.
  • Tasker, G. D. 1987. A comparison of methods for estimating low flow characteristics of streams. Water Resources Bulletin, 23 (6): 1077-1083.
  • Vogel, R. M., C. N. Kroll, 1989. Low-flow frequency analysis using probability-plot correlation coefficients. Journal of Water Resources Planning and Management, 115 (3): 338-357.
  • Vogel, R. M., I. Wilson, 1996. Probability distribution of annual, maximum, mean, and minimum streamflows in the United States. Journal of Hydrologic Engineering, 1 (2): 69-76.
  • Waltemeyer, S. D. 2002. Analysis of the magnitude and frequency of the 4-Day annual low flow and regression equations for estimating the 4-day, 3-year low-flow frequency at ungaged sites on unregulated streams in New Mexico. U.S. Department of the Interior, U.S. Geological Survey, Water Resources Investigation Report 01-4271, 22 p, New Mexico, USA.
  • Wilhite, D. A., M. H. Glantz, 1985. Understanding the drought phenomenon: The role of definitions. Water International, 10: 111-120, 1985.
  • Zelenhasic, E., 2002. On the extreme streamflow drought analysis. Water Resources Management, 16: 105-132.
  • Zelenhasic, E., A. Salvai, 1987. A method of streamflow drought analysis. Water Resources Research, 23 (1): 156-168.
There are 24 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Kadri Yürekli This is me

Ahmet Kurunç This is me

Selçuk Gül This is me

Publication Date January 1, 2005
Submission Date January 1, 2005
Published in Issue Year 2005

Cite

APA Yürekli, K., Kurunç, A., & Gül, S. (2005). Frequency Analysis of Low Flow Series from Çekerek Stream Basin. Journal of Agricultural Sciences, 11(01), 72-78. https://doi.org/10.1501/Tarimbil_0000000496

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).