Research Article
BibTex RIS Cite
Year 2023, , 38 - 46, 31.01.2023
https://doi.org/10.15832/ankutbd.962154

Abstract

References

  • Andrea A & Palafoxdla B (1986). Productive behaviour of eleven erect cultivars of groundnuts (Arachis hypogaea L.). Field Crop Abstracts 39 (4)
  • Akram N A, Shafiq F & Ashraf M (2018). Peanut (Arachis hypogaea L.): A prospective legume crop to offer multiple health benefits under changing climate. Institute of Food Technologists. Comprehensive Reviewsin Food Science and Food Safety Vol.17. https://doi:10.1111/1541-4337.12383
  • Andersen P C & Gorbet D W (2002). Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. Journal of Agricultural and Food Chemistry, 50(5), 1298–1305
  • Ayoola P B, Adeyeye A & Onawumi O O (2012). Chemical evaluation of food value of groundnut (Arachis hypogaea) seeds. American Journal of Food and Nutrition, 2(3), 55–57
  • Beringer H & Taha M A (1976). Calcium absorption by two cultivars of groundnut (Arachis hypogaea L). Exp. Agric. 12:107-111
  • Bolonhezi D, Santos R C & Godoy I J (2005). Manejo cultural do amendoim. In: Santos, R.C. (Ed.). O agronegocio do amendoim no Brasil. Campina Grande: Embrapa Algodao CNPA, 2 (6): 451-475 Bremner J M (1960). “Determination of nitrogen in soil by the Kjeldahl method”, J. Agric. Sci. 55:11-33
  • Cobb W Y & Johnson B R (1973). Physicochemical properties of plants. In Peanuts Culture and Uses. Amer. Peanut Res. Educ. Assn., Inc., Stillwater, pp 209-263. OK.
  • Cox F R, Nicholaids K K, Reid P H, Hallock D L & Martins D C (1970). Nutrient concentrationin Virginia, type peanuts during the growing season. North Carolina Agric. Exp. Stn. Tech. Bull, 204 p
  • Cox F R, Adams J F & Tucker B B (1982). Liming, fertilization and mineral nutrition. In: H.E. Pette and C.T.young (Eds.), Peanut Science and Technology. American Peanut Research and Education Society Inc. Yoakum, Texas, U.S.A. pp. 139-163
  • Davis J P, Price K M, Dean L L, Sweigart D S, Cottonaro J M & Sanders T H (2016). Peanut oil stability and physical properties across arange of industrially relevant oleic acid/ linoleic acid ratios. Peanut Science, 43(1), 1-11
  • Derise N L, Lau H A, Ritchey S J & Murphy E W (1974). Yield, proximate composition, and mineral element content of three cultivars ofraw and roasted peanuts. J. Food Sci. 39:264-266
  • Deshpande R P, Chinnan M S & Phillips R D (2008). Process development of a chocolate-flavoured peanut–soy beverage. International Journal of Food Science and Technology, 43(5), 886–894
  • Dwivedi R S (1988). Mineral nutrition of groundnut. Metropolitan Book Co, 135pp. New Delhi, India.
  • Eskalen A & Yılmaz A (1993). Kahramanmaraş koşullarında ana ürün olarak yetiştirilen yerfıstığı çeşitlerinin verim ve kimi özelliklerinin belirlenmesi. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi 1: 210-220 (In Turkish).
  • FAO Statistical Database. Retrieved from http://faostat.fao.org/faostat/collections?Subset=agriculture
  • Feitosa C T, Nogueira S S S, Gerin M A N & Rodrigues Filho F S O (1993). Avaliaçao do crescimento e da utilizaçao de nutrientes pelo amendoim. Scientia Agrícola, Piracicaba, 50 (3): 427-437.
  • Gaines T P & Hammons R O (1981). Mineral Composition of Peanut Seed as Influenced by Cultivar and Location. Peanut Science. 8:16-20.
  • Gascho G J & Davis G (1994). The Groundnut Crop: A scientific basis for improvement, pp 214-254. Edited by 1. Smartt. Published in 1994 by Chapman & Hall, London.
  • Guthrie J D, Hoffpauir C L, Stansbury M F & Reeves W A (1949). Survey of the chemical composition of cotton fibers, cottonseed, peanuts, and sweet potatoes. A literature review. US-DA AIC-61
  • Hallock D L, Martens D C & Alexander M W (1971). Distribution of P, K, Ca, Mg, B, Cu, Mn, and Zn in peanut lines near maturity. Agron. J. 63:251-256
  • Hallock D L & Allison A H (1980). Effect of three Ca sources applied on peanuts in Virginia. I. Productivity and seed quality. Peanut Sci. 7:19-25
  • Hallock D L (1980). Soil or foliar applied nutrient effects on mineral concentrations and germinability of peanut seed. Peanut Sci. 7:50-54
  • Harris H C & Bledsoe R W (1951). Physiology and mineral nutrition. In The Peanut- the Unpredictable Legume. Natl. Fert. Assn., Washington, D. C. pp. 89-121
  • Hartzog D L & Adams J F (1988). Soil fertility experiments with peanuts in Albana, 1973-1986. Albana Agric. Exp. Stn. Bull. 594:1-39.
  • Hasan M M, Cha M, Bajpai V K & Baek K H (2013). Production of a major stilbene phytoalexin, resveratrol in peanut (Arachis hypogaea) and peanut products: A mini review. Reviews in Environmental Science and Biotechnology, 12, 209–221.
  • Hoffpauir C L & Guthrie J D (1945). Chemical composition of peanuts. A literature review. Peanut J. Nut World. 24(6):26-30.
  • Hoffpauir C L (1953). Peanut composition. Relation to processing and utilization. J. Agr. Food Chem. 1:668-671.
  • Horneck D A & Hanson D (1998). Handbook of reference methods for plant analysis. Editör: Y.P. Karla, Washington, D.C, CRC Pres, p: 157-164.
  • Isaac A R & Johnson W C (1998). Handbook of reference methods for plant analysis. Editör: Y.P. Karla, Washington, D.C, CRC Pres, p: 65-170.
  • Isanga J & Zhang G N (2007). Biologically active components and nutraceuticals in peanuts and related products. Food Reviews International 23(2), 123–140.
  • Jagannathan N T, Selvaraj K V, Ramakrishnan M S, Natarajon C T & Muhammed S V (1976). Performance of new varieties of groundnut in bhavanisagar tract. Madras Agricultural Journal 61(9):815-816.
  • Jonnala R S, Dunford N T & Chenault K (2006). Tocopherol, phytosterol and phospholipid compositions of genetically modified peanut varieties. Journal of the Science of Food and Agriculture 86, 473–476.
  • Kacar B & İnal A (2014). Plant Analysis, Nobel Publishing Distribution, Ankara.
  • Kacar B (1994). Bitki ve toprağın kimyasal analizleri III. Toprak analizleri. Ankara Ünv. Ziraat Fak. Eğitim Araştırma ve Geliştirme Vakfı Yayınları, No:3, 705s, Ankara (In Turkish).
  • Krishna G, Singh B K, Kim E K, Morya V K & Ramteke P W (2015). Progress in genetic engineering of peanut (Arachis hypogaea L.): A review. Plant Biotechnology Journal 13(2), 147–162.
  • Lal R (2008). Soils and sustainable agriculture: A review. Agronomy for Sustainable Development 28, 57–64.
  • Laviola B G & Dias L A S (2008). Teor e acumulo de nutrientes em folhas e frutos de pinhao-manso. Revista Brasileira de Ciencia do Solo, Viçosa, v. 32, n. 1, p. 1969-1975.
  • Lindsay W L & Norwell W A (1969). Development of a DTPA micronutrient soil test Sci. Am. Proc. 35:600-602.
  • Lott W L, Gallo J P & Meaff J C (1956). Leaf analysis tecnique in coffe research, Ibec. Research Inc. 1(9):21-24.
  • Malavolta E, Vitti G C & Oliveira S A (1997). Avaliacao do estado nutricional das plantas: principios e aplicacoes. 2.ed. Piracicaba: Associacao Brasileira para Pesquisa da Potassa e do Fosfato. 319p
  • Marini A, Springael J, Frommer W & Andre B (2000). Cross-talk between ammonium transporters in yeast and interference by the soybean SATI protein. Mol. Microbial. 35, 378-385
  • Mulando T M M & Resurreccion A V A (2006). Peanut extract and emulsifier concentration affect sensory and physical properties of liquid whitener. Journal of Food Science 59(2), 344–349
  • O’Kelley J (1968). Mineral nutrition of algae. Annu. Rev. Plant Phsiol 19, 89-112.
  • Patel K G, Mandaliya V B, Mishra G P, Dobaria J R & Thankappan R (2016). Transgenic peanut overexpressing mtlD gene confers enhanced salinity stress tolerance via mannitol accumulation and differential antioxidative responses. Acta Physiologiae Plantarum 38: 181
  • Sales J M & Resurreccion A V A (2010). Phenolic profile, antioxidants, and sensory acceptance of bioactive-enhanced peanuts using ultrasound and UV. Food Chemistry 122(3), 795–803
  • Sarkar T, Thankappan R, Kumar A, Mishra G P & Dobaria J R (2016). Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) conferred tolerance to soil-moisture deficit stress. Frontiers in Plant Science 7: 935
  • Sillanpaa M (1990). Micronutrient assessment at the country level: An International Study. FAO Soils Bulletin No. 63, Rome. Food and Agriculture Organization; 10.1186/s12889-016-2765-y
  • Silva E D B, Ferreira E A, Pereira G A M, Silva D V & Oliveira A J M (2016). Peanut plant nutrient absorption and growth. ISSN 0100-316X (impresso), ISSN 1983-2125 (online). Universidade Federal Rural do Semi-Arido. 30: 653–661. http://dx.doi.org/10.1590/1983-21252017v30n313rc
  • Singh A L (1999). Mineral nutrition of groundnut. In: A. Hemantranjan (Ed.), Advances in Plant Physiology VolII, pp 161-200. Scientific Publishers (India), Jodhpu
  • Singh A L (2004). Mineral nutrient requirement, their disordersand remedies in Groundnut. In: M.S. Basu and N.B
  • Steer B T & Hocking P J (1984). Nitrogen nutrition of sunflower (Helianthus annuus L.) acquisition and partitioning of dry matter and nitrogen by vegetative organs and their relationship on seed yield. Field Crops Research 9:237-51
  • Tasso Junior l C, Marques M O & Nogueira G A A (2004). Cultura do Amendoim. 1. ed. Jaboticabal, SP: UNESP, p: 220
  • Taiz L & ZEIGER E (2013). Plant physiology. California: The Benjamin/Cummigs Publishing, p: 559
  • Tüzüner A (1990). Toprak ve su analiz laboratuvarları el kitabı. T.C. Tarım ve Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, s: 61-73, Ankara (In Turkish)
  • Tyerman S, Whitehead L & Day D (1995). A channel–like transporter for NH4+ on the symbistic interface of N2 fixing plants. Nature 378, 629-632
  • Walker W M & Hymowitz T (1972). Simple correlations between certain mineral and organic components of common beans, peanuts and cowpea. Commun. Soil Sci. Plant Anal. 3:505-511
  • White P J (1997). The repulation of K+ influxinto roots of rye (Secale cereale L.) seedlings by negative feedback via the K+ flux from shoot to root in the phloem. J. Exp. Bot. 48, 2063-2073
  • Zhang B, Sun L, Wu Y, Xu H & Tu K (2017). Adsorption kinetics of flavonoids from peanut hull by macroporous resin. China Oils and Fats 42(3), 122–126

Macro and Micro Element Composition of Some Peanut (Arachis hypogaea L.) Varieties in Turkey

Year 2023, , 38 - 46, 31.01.2023
https://doi.org/10.15832/ankutbd.962154

Abstract

This study was conducted to determine the macro and micro element contents of fourteen peanuts in Turkey. Virginia (NC-7, Halisbey, Arıoğlu-2003, Sultan Flower-22, Osmaniye-2005, Brantley, Wilson, Batem-5025, Batem-Cihangir, NC V 11 and Polen) Runner (Georgia Green) and Spanish (Florispan) market types have been evaluated. The research was conducted for two years (2015 to 2016) under main crop conditions in the trial areas of belonging to the Oil Seed Research Institute. The highest nitrogen content is from the Florispan (4.56%) variety, the highest phosphorus and sodium content is from the Halisbey (0.10%) variety, the highest potassium content is from the Sultan (0.46%) variety, the highest calcium content is from the Flower-22 (0.07%) variety and the highest the magnesium content was taken from Arıoğlu-2003 (0.26%) variety. The highest iron content is in Batem-Cihangir (27.34 mg kg-1) variety, the highest copper content is in Flower-22 (7.08 mg kg-1), the highest zinc content is in Sultan (29.35 mg kg-1), the highest manganese content NC-7 (20.61 mg kg-1) variety, the highest boron content was found in Florispan (26.99 mg kg-1) variety. According to the results of this study, varieties with different chemical compositions can be used in food and breeding studies.

References

  • Andrea A & Palafoxdla B (1986). Productive behaviour of eleven erect cultivars of groundnuts (Arachis hypogaea L.). Field Crop Abstracts 39 (4)
  • Akram N A, Shafiq F & Ashraf M (2018). Peanut (Arachis hypogaea L.): A prospective legume crop to offer multiple health benefits under changing climate. Institute of Food Technologists. Comprehensive Reviewsin Food Science and Food Safety Vol.17. https://doi:10.1111/1541-4337.12383
  • Andersen P C & Gorbet D W (2002). Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. Journal of Agricultural and Food Chemistry, 50(5), 1298–1305
  • Ayoola P B, Adeyeye A & Onawumi O O (2012). Chemical evaluation of food value of groundnut (Arachis hypogaea) seeds. American Journal of Food and Nutrition, 2(3), 55–57
  • Beringer H & Taha M A (1976). Calcium absorption by two cultivars of groundnut (Arachis hypogaea L). Exp. Agric. 12:107-111
  • Bolonhezi D, Santos R C & Godoy I J (2005). Manejo cultural do amendoim. In: Santos, R.C. (Ed.). O agronegocio do amendoim no Brasil. Campina Grande: Embrapa Algodao CNPA, 2 (6): 451-475 Bremner J M (1960). “Determination of nitrogen in soil by the Kjeldahl method”, J. Agric. Sci. 55:11-33
  • Cobb W Y & Johnson B R (1973). Physicochemical properties of plants. In Peanuts Culture and Uses. Amer. Peanut Res. Educ. Assn., Inc., Stillwater, pp 209-263. OK.
  • Cox F R, Nicholaids K K, Reid P H, Hallock D L & Martins D C (1970). Nutrient concentrationin Virginia, type peanuts during the growing season. North Carolina Agric. Exp. Stn. Tech. Bull, 204 p
  • Cox F R, Adams J F & Tucker B B (1982). Liming, fertilization and mineral nutrition. In: H.E. Pette and C.T.young (Eds.), Peanut Science and Technology. American Peanut Research and Education Society Inc. Yoakum, Texas, U.S.A. pp. 139-163
  • Davis J P, Price K M, Dean L L, Sweigart D S, Cottonaro J M & Sanders T H (2016). Peanut oil stability and physical properties across arange of industrially relevant oleic acid/ linoleic acid ratios. Peanut Science, 43(1), 1-11
  • Derise N L, Lau H A, Ritchey S J & Murphy E W (1974). Yield, proximate composition, and mineral element content of three cultivars ofraw and roasted peanuts. J. Food Sci. 39:264-266
  • Deshpande R P, Chinnan M S & Phillips R D (2008). Process development of a chocolate-flavoured peanut–soy beverage. International Journal of Food Science and Technology, 43(5), 886–894
  • Dwivedi R S (1988). Mineral nutrition of groundnut. Metropolitan Book Co, 135pp. New Delhi, India.
  • Eskalen A & Yılmaz A (1993). Kahramanmaraş koşullarında ana ürün olarak yetiştirilen yerfıstığı çeşitlerinin verim ve kimi özelliklerinin belirlenmesi. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi 1: 210-220 (In Turkish).
  • FAO Statistical Database. Retrieved from http://faostat.fao.org/faostat/collections?Subset=agriculture
  • Feitosa C T, Nogueira S S S, Gerin M A N & Rodrigues Filho F S O (1993). Avaliaçao do crescimento e da utilizaçao de nutrientes pelo amendoim. Scientia Agrícola, Piracicaba, 50 (3): 427-437.
  • Gaines T P & Hammons R O (1981). Mineral Composition of Peanut Seed as Influenced by Cultivar and Location. Peanut Science. 8:16-20.
  • Gascho G J & Davis G (1994). The Groundnut Crop: A scientific basis for improvement, pp 214-254. Edited by 1. Smartt. Published in 1994 by Chapman & Hall, London.
  • Guthrie J D, Hoffpauir C L, Stansbury M F & Reeves W A (1949). Survey of the chemical composition of cotton fibers, cottonseed, peanuts, and sweet potatoes. A literature review. US-DA AIC-61
  • Hallock D L, Martens D C & Alexander M W (1971). Distribution of P, K, Ca, Mg, B, Cu, Mn, and Zn in peanut lines near maturity. Agron. J. 63:251-256
  • Hallock D L & Allison A H (1980). Effect of three Ca sources applied on peanuts in Virginia. I. Productivity and seed quality. Peanut Sci. 7:19-25
  • Hallock D L (1980). Soil or foliar applied nutrient effects on mineral concentrations and germinability of peanut seed. Peanut Sci. 7:50-54
  • Harris H C & Bledsoe R W (1951). Physiology and mineral nutrition. In The Peanut- the Unpredictable Legume. Natl. Fert. Assn., Washington, D. C. pp. 89-121
  • Hartzog D L & Adams J F (1988). Soil fertility experiments with peanuts in Albana, 1973-1986. Albana Agric. Exp. Stn. Bull. 594:1-39.
  • Hasan M M, Cha M, Bajpai V K & Baek K H (2013). Production of a major stilbene phytoalexin, resveratrol in peanut (Arachis hypogaea) and peanut products: A mini review. Reviews in Environmental Science and Biotechnology, 12, 209–221.
  • Hoffpauir C L & Guthrie J D (1945). Chemical composition of peanuts. A literature review. Peanut J. Nut World. 24(6):26-30.
  • Hoffpauir C L (1953). Peanut composition. Relation to processing and utilization. J. Agr. Food Chem. 1:668-671.
  • Horneck D A & Hanson D (1998). Handbook of reference methods for plant analysis. Editör: Y.P. Karla, Washington, D.C, CRC Pres, p: 157-164.
  • Isaac A R & Johnson W C (1998). Handbook of reference methods for plant analysis. Editör: Y.P. Karla, Washington, D.C, CRC Pres, p: 65-170.
  • Isanga J & Zhang G N (2007). Biologically active components and nutraceuticals in peanuts and related products. Food Reviews International 23(2), 123–140.
  • Jagannathan N T, Selvaraj K V, Ramakrishnan M S, Natarajon C T & Muhammed S V (1976). Performance of new varieties of groundnut in bhavanisagar tract. Madras Agricultural Journal 61(9):815-816.
  • Jonnala R S, Dunford N T & Chenault K (2006). Tocopherol, phytosterol and phospholipid compositions of genetically modified peanut varieties. Journal of the Science of Food and Agriculture 86, 473–476.
  • Kacar B & İnal A (2014). Plant Analysis, Nobel Publishing Distribution, Ankara.
  • Kacar B (1994). Bitki ve toprağın kimyasal analizleri III. Toprak analizleri. Ankara Ünv. Ziraat Fak. Eğitim Araştırma ve Geliştirme Vakfı Yayınları, No:3, 705s, Ankara (In Turkish).
  • Krishna G, Singh B K, Kim E K, Morya V K & Ramteke P W (2015). Progress in genetic engineering of peanut (Arachis hypogaea L.): A review. Plant Biotechnology Journal 13(2), 147–162.
  • Lal R (2008). Soils and sustainable agriculture: A review. Agronomy for Sustainable Development 28, 57–64.
  • Laviola B G & Dias L A S (2008). Teor e acumulo de nutrientes em folhas e frutos de pinhao-manso. Revista Brasileira de Ciencia do Solo, Viçosa, v. 32, n. 1, p. 1969-1975.
  • Lindsay W L & Norwell W A (1969). Development of a DTPA micronutrient soil test Sci. Am. Proc. 35:600-602.
  • Lott W L, Gallo J P & Meaff J C (1956). Leaf analysis tecnique in coffe research, Ibec. Research Inc. 1(9):21-24.
  • Malavolta E, Vitti G C & Oliveira S A (1997). Avaliacao do estado nutricional das plantas: principios e aplicacoes. 2.ed. Piracicaba: Associacao Brasileira para Pesquisa da Potassa e do Fosfato. 319p
  • Marini A, Springael J, Frommer W & Andre B (2000). Cross-talk between ammonium transporters in yeast and interference by the soybean SATI protein. Mol. Microbial. 35, 378-385
  • Mulando T M M & Resurreccion A V A (2006). Peanut extract and emulsifier concentration affect sensory and physical properties of liquid whitener. Journal of Food Science 59(2), 344–349
  • O’Kelley J (1968). Mineral nutrition of algae. Annu. Rev. Plant Phsiol 19, 89-112.
  • Patel K G, Mandaliya V B, Mishra G P, Dobaria J R & Thankappan R (2016). Transgenic peanut overexpressing mtlD gene confers enhanced salinity stress tolerance via mannitol accumulation and differential antioxidative responses. Acta Physiologiae Plantarum 38: 181
  • Sales J M & Resurreccion A V A (2010). Phenolic profile, antioxidants, and sensory acceptance of bioactive-enhanced peanuts using ultrasound and UV. Food Chemistry 122(3), 795–803
  • Sarkar T, Thankappan R, Kumar A, Mishra G P & Dobaria J R (2016). Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) conferred tolerance to soil-moisture deficit stress. Frontiers in Plant Science 7: 935
  • Sillanpaa M (1990). Micronutrient assessment at the country level: An International Study. FAO Soils Bulletin No. 63, Rome. Food and Agriculture Organization; 10.1186/s12889-016-2765-y
  • Silva E D B, Ferreira E A, Pereira G A M, Silva D V & Oliveira A J M (2016). Peanut plant nutrient absorption and growth. ISSN 0100-316X (impresso), ISSN 1983-2125 (online). Universidade Federal Rural do Semi-Arido. 30: 653–661. http://dx.doi.org/10.1590/1983-21252017v30n313rc
  • Singh A L (1999). Mineral nutrition of groundnut. In: A. Hemantranjan (Ed.), Advances in Plant Physiology VolII, pp 161-200. Scientific Publishers (India), Jodhpu
  • Singh A L (2004). Mineral nutrient requirement, their disordersand remedies in Groundnut. In: M.S. Basu and N.B
  • Steer B T & Hocking P J (1984). Nitrogen nutrition of sunflower (Helianthus annuus L.) acquisition and partitioning of dry matter and nitrogen by vegetative organs and their relationship on seed yield. Field Crops Research 9:237-51
  • Tasso Junior l C, Marques M O & Nogueira G A A (2004). Cultura do Amendoim. 1. ed. Jaboticabal, SP: UNESP, p: 220
  • Taiz L & ZEIGER E (2013). Plant physiology. California: The Benjamin/Cummigs Publishing, p: 559
  • Tüzüner A (1990). Toprak ve su analiz laboratuvarları el kitabı. T.C. Tarım ve Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, s: 61-73, Ankara (In Turkish)
  • Tyerman S, Whitehead L & Day D (1995). A channel–like transporter for NH4+ on the symbistic interface of N2 fixing plants. Nature 378, 629-632
  • Walker W M & Hymowitz T (1972). Simple correlations between certain mineral and organic components of common beans, peanuts and cowpea. Commun. Soil Sci. Plant Anal. 3:505-511
  • White P J (1997). The repulation of K+ influxinto roots of rye (Secale cereale L.) seedlings by negative feedback via the K+ flux from shoot to root in the phloem. J. Exp. Bot. 48, 2063-2073
  • Zhang B, Sun L, Wu Y, Xu H & Tu K (2017). Adsorption kinetics of flavonoids from peanut hull by macroporous resin. China Oils and Fats 42(3), 122–126
There are 58 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Ferrin Ferda Aşık 0000-0003-1360-894X

Barış Bülent Aşık 0000-0001-8395-6283

Publication Date January 31, 2023
Submission Date July 8, 2021
Acceptance Date February 2, 2022
Published in Issue Year 2023

Cite

APA Aşık, F. F., & Aşık, B. B. (2023). Macro and Micro Element Composition of Some Peanut (Arachis hypogaea L.) Varieties in Turkey. Journal of Agricultural Sciences, 29(1), 38-46. https://doi.org/10.15832/ankutbd.962154

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).