Research Article
BibTex RIS Cite

Ön Muameleden Etkilenen Toprak Parçacık Büyüklük Dağılımı ve Katı Fraktal Boyutları

Year 2011, Volume: 17 Issue: 3, 217 - 229, 04.09.2011
https://doi.org/10.1501/Tarimbil_0000001173

Abstract

Toprak parçacık büyüklük dağılımı toprak oluş işlemleri ve ürünleri hakkında önemli bilgiler sağlamaktadır. Bu çalışmanın amacı, ön muamelenin parçacık büyüklük dağılımına ve buna karşılık gelen parçacıkların fraktal boyuna (Ds) etkisini belirlemektir. Farklı iklim ve toprak oluşum işlemleri altında bulunan ve parçacık büyüklük dağılımı, kalsiyum karbonat ve organik madde içerikleri değişken olan yirmi dokuz toprak örneği toplanmıştır. Ön muamelenin parçacık büyüklük dağılımına etkisini değerlendirmek için, dört farklı şekilde parçacık büyüklük dağılımı ve fraktal boyut değerleri elde edilmiştir. Uygulamalar 1)kontrol (muamele yapılmayan), 2) H2O2 ile organik maddenin uzaklaştırılması 3) kalsit’in (CaCO3) NaOAc ile uzaklaştırılması ve 4) organik madde ve kalsiyum karbonatın uzaklaştırılması şeklindedir. Örneklerin kil içeriği %12.5 ile %66.5, organik madde %0.05 ile %4.25 ve kalsiyum karbonat içeriği %5.57 ile %60.09 arasında değişmektedir. Organik madde uzaklaştırılmadan önce ve sonraki kil içeriği istatistiksel olarak önemli (P<0.05) iken bu fark silt ve kum içeriği için ve fraktal değerleri için önemli bulunmamıştır. Bununla birlikte, kalsiyum karbonat uzaklaştırılan örneklerin fraktal değerleri ve kum içeriği muamele yapılmayan örneklere göre önemli düzeyde farklı bulunmuştur (sırası ile P<0.01 ve P<0.05). Kalsiyum karbonatın uzaklaştırılması muhtemelen kil fraksiyonu içinde görülen kil büyüklüğündeki kalsiyum karbonatın uzaklaştırmıştır. Bundan dolayı, en düşük ortalama fraktal değerleri (Dsc=2.8343 ve Dsoc=2.8336) kalsiyum karbonat uzaklaştırılması ile bulunmuştur. Çalışma sonuçları ön muamelelerin parçacık büyüklük dağılımını etkilediğini göstermiştir. Bununla birlikte, hem H2O2 hem de NaOAc ile muamele edildiğinde kil, silt ve kum içeriklerindeki farklılık önemli olmamıştır. 

References

  • Bittelli M, Campbell G S & Flury M (1999). Characterization of particle-size distribution in soils with a fragmentation model. Soil Science Society of American Journal 63:782-788
  • Bronick C J & Lal R (2005). Soil structure and management: A review. Geoderma 124:3-22
  • Ersahin S, Gunal H, Yetgin B, Kutlu T & Coban S (2006). Estimating specific surface area and cation exchange capacity in soils with fractal dimension of particle-size distribution. Geoderma 136(3,4): 588- 597
  • Eshel G, Levy J, Mingelgrin U & Singer M J (2004). Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Science Society of American Journal 68:736-743
  • Feller C, Schouller E, Thomas F, Rouiller J & Herbillon A J (1992). N2-BET specific surface areas of some low activity clay soils and their relationships with secondary constituents and organic matter contents. Soil Science 153:293-299
  • Filgueira R R, Pachepsky Y A & Fournier L L (2003). Time-mass scaling in soil texture analysis. Soil Science Society of American Journal 67(6):1703- 1706
  • Filgueira, R R, Fournier L L, Cerisola C I, Gelati P & Garcia M G (2006). Particle-size distribution in soils: a critical study of the fractal model validation. Geoderma 134:327-334
  • Gee G W & Bauder J W (1986). Particle size analysis. In: Methods of Soil Analysis. A. Klute (Ed), Part 1, 2nd ed. Agronomy No. 9. American Society of Agronomy, Madison, WI, pp. 825-844
  • Hesse P R (1976). Particle size distribution in gypsic soils. Plant and Soil 44:241-247
  • Jin Z, Dong Y S, Qi Y C, Liu W G & An Z S (2011). Characterizing variations in soil particle size distribution along a grass–desert shrub transition in the ordos plateau of inner Mongolia, China. Land Degradation and Development. DOI: 10.1002/ldr.1112
  • Kerry R & Oliver M A (2006). How should soil texture be determined for chalk soil? 18th World Congress of Soil Science. July 5-9, 2006. Philadelphia, PA, USA
  • Khodaverdiloo H, Homaee M, van Genuchten M T & Dashtaki S G (2011) Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology 399:93-99
  • Kleinbaum D G, Kupper L L & Muller K E (1988). Applied Regression Analysis and Other Multivariable Methods. Second Edition, Duxbury Press. Belmont, CA. USA
  • Leifeld J & Kögel-Knabner I (2003). Microaggregates in agricultural soils and their size distribution determined by X-ray attenuation. European Journal of Soil Science 54:167-174
  • Nelson D W & Sommers L E (1982). Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis. Page, A.L. (Ed) Part 2, 2nd ed. Agron. Monogr. 9. ASA. And SSSA, Madison, WI, pp. 539-579
  • Perfect E & Kay B D (1991). Fractal theory applied to soil aggregation. Soil Science Society of American Journal 55:1552-1558
  • Posadas A N D, Gimenez D, Bittelli M, Vaz C M P & Flury M (2001), Multifractal characterization of soil particle-size distributions. Soil Science Society of American Journal 65:1361-1367
  • Rasiah V, Kay B D & Perfect E (1993), New massbased model for estimating fractal dimensions of soil aggregates. Soil Science Society of American Journal 57:891-895
  • Schmidt M W I, Rumpel C & Koegel-Knabner I (1999). Particle size fractionation of soil containing coal and combusted particles. European Journal of Soil Science 50:515-522
  • Schultz M K, Biegalski S R, Inn K G W, Yu L, Burnett W C, Thomas L J W & Smith G E (1999). Optimizing the removal of carbon phases in soils and sediments for sequential chemical extractions by coulometry. Journal of Environmental Monitoring 1:183-190
  • Soil Survey Division Staff (1993). Soil Survey Division Staff. 1993. Soil Survey Manual. USDA Handbook 18. United States Government Print Office, Washington, DC. USA
  • Soil Survey Staff (2010). Keys to Soil Taxonomy. 11th ed., USDA National Resources Conservation Service, Washington, DC. USA http://soils.usda.gov/technical/ classification/tax_keys/
  • Stanchi S E, Bonifacio E Z & Perfect E (2008). Chemical and physical treatment effects on aggregate breakup in the 0- to 2-mm size range. Soil Science Society of American Journal 72(5):1418- 1421
  • Stanchi S, Bonifacio E Z & Pachepsky E Y (2006). Fractal behavior in particle-size distributions as influenced by soil properties and determination method. Soil Science 171(4):283-292
  • Tisdall JM (1996). Formation of soil aggregates and accumulation of soil organic matter. In: Carter, MR., Stewart, B.A. (Eds.), Structure and Organic Matter Storage in Agricultural Soils. Lewis Publishers, Boca Raton, FL, pp. 57-96
  • Tyler S W & Wheatcraft S W (1992). Fractal scaling of soil-particle size distributions: Analysis and Limitations. Soil Science Society of American Journal 56:362-369
  • Wilding L P, & Dress L R (1983). Spatial variability in pedology In L.P. Wilding et al. (ed). Pedogenesis and soil taxonomy. I: concepts and interactions. Elseveir, New York, p. 83-116
  • Wu Q, M Borkovec, & Sticher H (1993). On particlesize distribution in soils. Soil Science Society of American Journal 57:883-890

Soil Particle Size Distribution and Solid Fractal Dimension as Influenced by Pretreatments

Year 2011, Volume: 17 Issue: 3, 217 - 229, 04.09.2011
https://doi.org/10.1501/Tarimbil_0000001173

Abstract

Soil particle-size distributions can provide valuable information on the processes and products of soil formation.
The purpose of this study was to assess the pretreatment effect on the particle size distribution and corresponding
fractal dimension of particle size (Ds). Twenty nine soil samples were collected from diverse climatic and
pedogenic conditions with diverse particle size distributions, calcium carbonate and organic matter contents. To
evaluate the effect of pretreatment on soil particle-size distribution, four different types of particle size distributions
and fractal dimension values were obtained. Treatments included, 1) no pretreated, 2) organic matter removed with
H2O2, 3) calcite (CaCO3) removed with NaOAc, and 4) organic matter and calcium carbonate removed. Clay
content ranged from 12.5 to 66.5%, organic matter varied from 0.05 to 4.25%, and calcium carbonate content
ranged from 5.57 to 60.09%. The difference in clay content before (42.36%) and after (44.61%) pretreatment of
organic matter was significant (P<0.05) but the same pretreatment didn’t yield any significant differences in sand,
silt and fractals. However, fractal and sand content obtained after calcium carbonate removal were significantly
different from those of non-pretreated samples (P<0.01 and P<0.05, respectively). Dissolving calcium carbonate
probably removed the clay sized calcium carbonate particles which were considered within the clay fraction.
Therefore, the lowest mean fractal values (Dsc=2.8343 and Dsoc=2.8336) were obtained after calcium carbonate
removal. The study results revealed that pretreatments affected the rates of particle size distributions. However, the
differences in clay, silt, and sand contents obtained when pretreated together with H2O2 and NaOAc were not
significantly different. 

References

  • Bittelli M, Campbell G S & Flury M (1999). Characterization of particle-size distribution in soils with a fragmentation model. Soil Science Society of American Journal 63:782-788
  • Bronick C J & Lal R (2005). Soil structure and management: A review. Geoderma 124:3-22
  • Ersahin S, Gunal H, Yetgin B, Kutlu T & Coban S (2006). Estimating specific surface area and cation exchange capacity in soils with fractal dimension of particle-size distribution. Geoderma 136(3,4): 588- 597
  • Eshel G, Levy J, Mingelgrin U & Singer M J (2004). Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Science Society of American Journal 68:736-743
  • Feller C, Schouller E, Thomas F, Rouiller J & Herbillon A J (1992). N2-BET specific surface areas of some low activity clay soils and their relationships with secondary constituents and organic matter contents. Soil Science 153:293-299
  • Filgueira R R, Pachepsky Y A & Fournier L L (2003). Time-mass scaling in soil texture analysis. Soil Science Society of American Journal 67(6):1703- 1706
  • Filgueira, R R, Fournier L L, Cerisola C I, Gelati P & Garcia M G (2006). Particle-size distribution in soils: a critical study of the fractal model validation. Geoderma 134:327-334
  • Gee G W & Bauder J W (1986). Particle size analysis. In: Methods of Soil Analysis. A. Klute (Ed), Part 1, 2nd ed. Agronomy No. 9. American Society of Agronomy, Madison, WI, pp. 825-844
  • Hesse P R (1976). Particle size distribution in gypsic soils. Plant and Soil 44:241-247
  • Jin Z, Dong Y S, Qi Y C, Liu W G & An Z S (2011). Characterizing variations in soil particle size distribution along a grass–desert shrub transition in the ordos plateau of inner Mongolia, China. Land Degradation and Development. DOI: 10.1002/ldr.1112
  • Kerry R & Oliver M A (2006). How should soil texture be determined for chalk soil? 18th World Congress of Soil Science. July 5-9, 2006. Philadelphia, PA, USA
  • Khodaverdiloo H, Homaee M, van Genuchten M T & Dashtaki S G (2011) Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology 399:93-99
  • Kleinbaum D G, Kupper L L & Muller K E (1988). Applied Regression Analysis and Other Multivariable Methods. Second Edition, Duxbury Press. Belmont, CA. USA
  • Leifeld J & Kögel-Knabner I (2003). Microaggregates in agricultural soils and their size distribution determined by X-ray attenuation. European Journal of Soil Science 54:167-174
  • Nelson D W & Sommers L E (1982). Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis. Page, A.L. (Ed) Part 2, 2nd ed. Agron. Monogr. 9. ASA. And SSSA, Madison, WI, pp. 539-579
  • Perfect E & Kay B D (1991). Fractal theory applied to soil aggregation. Soil Science Society of American Journal 55:1552-1558
  • Posadas A N D, Gimenez D, Bittelli M, Vaz C M P & Flury M (2001), Multifractal characterization of soil particle-size distributions. Soil Science Society of American Journal 65:1361-1367
  • Rasiah V, Kay B D & Perfect E (1993), New massbased model for estimating fractal dimensions of soil aggregates. Soil Science Society of American Journal 57:891-895
  • Schmidt M W I, Rumpel C & Koegel-Knabner I (1999). Particle size fractionation of soil containing coal and combusted particles. European Journal of Soil Science 50:515-522
  • Schultz M K, Biegalski S R, Inn K G W, Yu L, Burnett W C, Thomas L J W & Smith G E (1999). Optimizing the removal of carbon phases in soils and sediments for sequential chemical extractions by coulometry. Journal of Environmental Monitoring 1:183-190
  • Soil Survey Division Staff (1993). Soil Survey Division Staff. 1993. Soil Survey Manual. USDA Handbook 18. United States Government Print Office, Washington, DC. USA
  • Soil Survey Staff (2010). Keys to Soil Taxonomy. 11th ed., USDA National Resources Conservation Service, Washington, DC. USA http://soils.usda.gov/technical/ classification/tax_keys/
  • Stanchi S E, Bonifacio E Z & Perfect E (2008). Chemical and physical treatment effects on aggregate breakup in the 0- to 2-mm size range. Soil Science Society of American Journal 72(5):1418- 1421
  • Stanchi S, Bonifacio E Z & Pachepsky E Y (2006). Fractal behavior in particle-size distributions as influenced by soil properties and determination method. Soil Science 171(4):283-292
  • Tisdall JM (1996). Formation of soil aggregates and accumulation of soil organic matter. In: Carter, MR., Stewart, B.A. (Eds.), Structure and Organic Matter Storage in Agricultural Soils. Lewis Publishers, Boca Raton, FL, pp. 57-96
  • Tyler S W & Wheatcraft S W (1992). Fractal scaling of soil-particle size distributions: Analysis and Limitations. Soil Science Society of American Journal 56:362-369
  • Wilding L P, & Dress L R (1983). Spatial variability in pedology In L.P. Wilding et al. (ed). Pedogenesis and soil taxonomy. I: concepts and interactions. Elseveir, New York, p. 83-116
  • Wu Q, M Borkovec, & Sticher H (1993). On particlesize distribution in soils. Soil Science Society of American Journal 57:883-890
There are 28 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Hikmet Günal

Sabit Erşahin

Buket Uz

Mesut Budak This is me

Nurullah Acir This is me

Publication Date September 4, 2011
Submission Date June 26, 2011
Published in Issue Year 2011 Volume: 17 Issue: 3

Cite

APA Günal, H., Erşahin, S., Uz, B., Budak, M., et al. (2011). Soil Particle Size Distribution and Solid Fractal Dimension as Influenced by Pretreatments. Journal of Agricultural Sciences, 17(3), 217-229. https://doi.org/10.1501/Tarimbil_0000001173

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).