BibTex RIS Cite

-

Year 2015, Volume: 21 Issue: 1, 1 - 12, 24.12.2014
https://doi.org/10.15832/tbd.97001

Abstract

The objective of this study was to investigate the effectiveness of tile drainage system, tile flow rates in relation to soil matric potential ranges and water table levels based on seasonal rainfalls in a heavy clayey alluvial soil profile. In order to observe water potential, drain flows, water table levels, climatic parameters, Gardner’s field type irrometers/tensiometers, a weather station, digital water flow meters, automated moisture probes, and piezometers were established in Tarla 49 station with heavy clay alluvial soils, Üçgedik, the Amik Plain. Tensiometric moisture potentials in the 0-30, 30-60, and 60-90 cm layers varied from 3.8 to 16, from 12 to 16, and from 15 to 20 kPa, respectively. Drain flows of 3873 and 15561l occurred according to the given moisture potentials 5 to 7 days after rainfalls. Water levels in piezometer battery , parallel to the flow channel of outlet, varied from high to low; 54-132, 72-122, and 117-152 cm, respectively. The piezometer battery , installed between laterals, registered very rarely high water table levels greater than drain depth of 100 cm. On the other hand, the piezometers farthest from the drain outlet registered the highest water table levels varying from 133 to 96, 103 to 73, and 119 to 77 cm, respectively. The rains and infiltration were effective in 0-45 cm depth. The tensiometers in deeper depths responded to the rains between 4 and 6 days. Water table fluctuations were more effective than rains on the 90 cm depth tensiometers. Piezometer heads ranged from 44 to 157 cm in the spring and early summer and 0 to 44 cm for at least 24 days in the early spring. In conclusion, tile drainage system was operable effectively while runoff flow was ponding in the field. Therefore, a combined drainage system could remedy drainage hazard in the study area

References

  • Bradley C, Mosugu M & Gerrard J (2007). Seasonal dynamics of soil water pressure in a cracking clay soil. Catena 69: 253-263
  • Bradley C, Clay A, Clifford N J, Gerrard J & Gurnell A M (2010). Variations in saturated and unsaturated water movement through an upland floodplain wetland, mid-Whales, UK, Journal of Hydrology 393: 349-361
  • Brooks R H & Corey A T (1964). Hydraulic properties of porous media. Hydrology paper 3. Colorado State University, Fort Collins, CO
  • Campbell G S (1988). Soil water potential measurement: an overview. Irrigation Science 9: 265-273
  • Cassel D K & Klute A (1986). Water potential: tensiometry. In: Klute, A. Ed.., Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods. Monograph No. 3, American Society Agronomy, Madison, WI, pp. 563–596
  • Cuny H, Wery J & Gaufres F (1998). A simple indicator for diagnosing leaching risk below the root zone using Tensionic tensiometers. Agronomy Journal 18: 521–535
  • Dane J H, Walker R H, Bahaminyakamwe L & Belcher J L (2006). Tall fescue and hybrid bluegrass response to soil water matric head limits. Agricultural Water Management 86: 177-186
  • DSİ (Office of Turkish Hydraulic Works) (1962). Amik projesi: Amik Ovası Planlama Arazi Tasnif Raporu. T.C. Bayındırlık Bakanlığı Devlet Su İşleri Genel Müdürlüğü Etüt ve Plan Dairesi Reisliği, Etüt Raporları No: 17-104, Proje No: 1901, Ankara
  • Gaudin R & Rapanoelina M (2003). Irrigation based on a nomogram using soil suction measurements. Agricultural Water Management 58: 45-53
  • Lim T T, Rahardjo H, Chang M F & Fredlund D G (1996). Effect of rainfall on matric suctions in a residual soil slope. Canadian Geotechnical Journal 33: 618–628
  • Martin R P, Siu K L & Premchitt J (1994). Review of the performance of horizontal drains in Hong Kong. Special Project Report, SPR 11/94, Geotechnical Engineering Office, Civil Engineering Department, Hong Kong, pp. 106
  • Rahardjio H, Hritzuk K J, Leong E C & Rezaur R B (2003). Effectiveness of horizontal drains for slope stability. Engineering Geology 69: 295-308
  • Richards L A (1949). Methods of measuring soil moisture tension. Soil Science Society of America 68: 95-112
  • Silber A, Levi M, Cohen M, David N, Shtaynmetz Y & Assouline S (2006). ‘Safari Sunset’ response to irrigation and fertilization levels. The Journal of Horticultural Science and Biotechnology 81: 335-364
  • Silber A, Levi M, Cohen M, David N, Shtaynmetz Y & Assouline S (2007). Response of Leucadendron ‘Safari Sunset’ to egulated deficit irrigation: Effects of stress timing on growth and yield quality. Agricultural Water Management 87: 162-170
  • USSLS (1954). Diagnosis and Improvement of Saline and Alkali Soils. Agriculture Handbook 60. USDA. Reprinted 1969. U.S. Government Printing Office, Washington D.C
  • Wang F X, Kang Y, Liu S P & Hou X Y (2007). Effects of soıl matric potential on potato growth under drip irrigation in the North Chana Plain. Agricultural Water Management 88: 34-42
  • Wery J (2005). Differential effects of soil water deficit on the basic plant functions and their significance to analyse crop responses to water deficit in indeterminate plants. Australian Journal of Agricultural Research 56: 1201–1209
  • Young M H & Sisson J B (2002). 3.2. Water Potential, 3.2.2. Tensiometry. In: Dane, J.H., Topp, G.C. (Eds.), Methods of Soil Analysis. Part 4. Physical Methods. Soil Sci. Soc. Am. Book Series No. 5. Madison, WI, pp. 575–608

Tansiyometrik Nem Potansiyelinin Yüzey Altı Drenajlı Ağır Killi Toprakta Mevsimsel Yağışlara Bağlı Dağılımı

Year 2015, Volume: 21 Issue: 1, 1 - 12, 24.12.2014
https://doi.org/10.15832/tbd.97001

Abstract

Bu çalışmanın amacı; ağır killi aluviyal bir toprak profilinde yüzey altı boru drenajının etkinliğini test etmek, buna
bağlı yüzey altı drenaj akışlarının toprak su potansiyeli aralıklarını ve taban suyu seviyelerini tespit ederek mevsimsel
yağışlara bağlı dağılımını ortaya çıkarmaktır. Toprak su potansiyelini, drenaj akışlarını, taban suyu seviyelerini ve
iklim parametrelerini gözlemlemek üzere Gardner tarla tipi irrometre/tansiyometreleri, meteoroloji istasyonu, dijital
su sayaçları, otomatik nem kaydediciler ve piyezometreler Amik Ovası, Üçgedik mevkisinde Tarla 49 araştırma
istasyonunda ağır killi aluviyal topraklar üzerine kurulmuştur. Tansiyometrik nem potansiyeli 0-30 cm derinlikte 3.8-
16 kPa, 30-60 cm derinlikte12-16 kPa ve 60-90 cm derinlikte 15-20 kPa arasında değişmiştir. Drenaj akışları (3873 L
ve 1556 L) yağışlardan 5-7 gün sonra yukarıda verilen nem potansiyel sınırları arasında oluşmaya devam etmiştir.
Drenaj çıkış ağzının boşaltım kanalına paralel piyezometre bataryası (7-8-9) su seviyeleri yüksekten düşük seviyelere
değişirken sırasıyla 54 cm’den 132 cm’ye, 77 cm’den 122 cm’ye ve 117 cm’den 152 cm’ye kadar düşmüştür. Dren
lateralleri arasında yerleşik piyezometreler (4-5-6) dren derinliği olan 100 cm seviyesini geçmemiştir. Bunun tersine
drenaj çıkış ağzına en uzak piyezometre bataryası (1-2-3) en yüksek su seviyelerini kaydetmiş ve sırasıyla 133-
96, 103-73 ve 119-77 cm değerine yükselmiştir. Yağış miktarı ve infiltrasyon 45 cm toprak derinliğine kadar sınırlı
etkide bulunmuş ancak genellikle dren borularına ulaşamamıştır. Yüzey toprak katmanına gömülen tansiyometreler
yağışlara en erken tepki verirken daha derinlere gömülen tansiyometreler 4-6 günde tepki vermişler, ancak taban
suyu seviyesindeki dalgalanmalar 90 cm derinliğe gömülen tansiyometreler üzerinde yağışlardan daha etkili olduğu
görülmüştür. Piyezometrelerin su seviyeleri bahar dönemi ve yaz başlangıcında 44-157 cm arasında değişmiş ve erken
bahar döneminde de 0-44 cm arasında dalgalanmaya en az 24 gün devam etmiştir. Sonuç olarak, yüzey altı boru drenaj
sistemi etkin çalışmasına rağmen suyun yüzeydeki akışı nedeniyle tarlada göllenmeye devam etmiştir. Elde edilen
sonuçlar kombine drenaj sisteminin çalışma alanında drenaj zararını azaltmada etkin olabileceğini göstermiştir.

References

  • Bradley C, Mosugu M & Gerrard J (2007). Seasonal dynamics of soil water pressure in a cracking clay soil. Catena 69: 253-263
  • Bradley C, Clay A, Clifford N J, Gerrard J & Gurnell A M (2010). Variations in saturated and unsaturated water movement through an upland floodplain wetland, mid-Whales, UK, Journal of Hydrology 393: 349-361
  • Brooks R H & Corey A T (1964). Hydraulic properties of porous media. Hydrology paper 3. Colorado State University, Fort Collins, CO
  • Campbell G S (1988). Soil water potential measurement: an overview. Irrigation Science 9: 265-273
  • Cassel D K & Klute A (1986). Water potential: tensiometry. In: Klute, A. Ed.., Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods. Monograph No. 3, American Society Agronomy, Madison, WI, pp. 563–596
  • Cuny H, Wery J & Gaufres F (1998). A simple indicator for diagnosing leaching risk below the root zone using Tensionic tensiometers. Agronomy Journal 18: 521–535
  • Dane J H, Walker R H, Bahaminyakamwe L & Belcher J L (2006). Tall fescue and hybrid bluegrass response to soil water matric head limits. Agricultural Water Management 86: 177-186
  • DSİ (Office of Turkish Hydraulic Works) (1962). Amik projesi: Amik Ovası Planlama Arazi Tasnif Raporu. T.C. Bayındırlık Bakanlığı Devlet Su İşleri Genel Müdürlüğü Etüt ve Plan Dairesi Reisliği, Etüt Raporları No: 17-104, Proje No: 1901, Ankara
  • Gaudin R & Rapanoelina M (2003). Irrigation based on a nomogram using soil suction measurements. Agricultural Water Management 58: 45-53
  • Lim T T, Rahardjo H, Chang M F & Fredlund D G (1996). Effect of rainfall on matric suctions in a residual soil slope. Canadian Geotechnical Journal 33: 618–628
  • Martin R P, Siu K L & Premchitt J (1994). Review of the performance of horizontal drains in Hong Kong. Special Project Report, SPR 11/94, Geotechnical Engineering Office, Civil Engineering Department, Hong Kong, pp. 106
  • Rahardjio H, Hritzuk K J, Leong E C & Rezaur R B (2003). Effectiveness of horizontal drains for slope stability. Engineering Geology 69: 295-308
  • Richards L A (1949). Methods of measuring soil moisture tension. Soil Science Society of America 68: 95-112
  • Silber A, Levi M, Cohen M, David N, Shtaynmetz Y & Assouline S (2006). ‘Safari Sunset’ response to irrigation and fertilization levels. The Journal of Horticultural Science and Biotechnology 81: 335-364
  • Silber A, Levi M, Cohen M, David N, Shtaynmetz Y & Assouline S (2007). Response of Leucadendron ‘Safari Sunset’ to egulated deficit irrigation: Effects of stress timing on growth and yield quality. Agricultural Water Management 87: 162-170
  • USSLS (1954). Diagnosis and Improvement of Saline and Alkali Soils. Agriculture Handbook 60. USDA. Reprinted 1969. U.S. Government Printing Office, Washington D.C
  • Wang F X, Kang Y, Liu S P & Hou X Y (2007). Effects of soıl matric potential on potato growth under drip irrigation in the North Chana Plain. Agricultural Water Management 88: 34-42
  • Wery J (2005). Differential effects of soil water deficit on the basic plant functions and their significance to analyse crop responses to water deficit in indeterminate plants. Australian Journal of Agricultural Research 56: 1201–1209
  • Young M H & Sisson J B (2002). 3.2. Water Potential, 3.2.2. Tensiometry. In: Dane, J.H., Topp, G.C. (Eds.), Methods of Soil Analysis. Part 4. Physical Methods. Soil Sci. Soc. Am. Book Series No. 5. Madison, WI, pp. 575–608
There are 19 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Rifat Akış

Publication Date December 24, 2014
Submission Date December 26, 2012
Published in Issue Year 2015 Volume: 21 Issue: 1

Cite

APA Akış, R. (2014). Tansiyometrik Nem Potansiyelinin Yüzey Altı Drenajlı Ağır Killi Toprakta Mevsimsel Yağışlara Bağlı Dağılımı. Journal of Agricultural Sciences, 21(1), 1-12. https://doi.org/10.15832/tbd.97001

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).