Research Article
BibTex RIS Cite
Year 2017, Volume: 23 Issue: 3, 328 - 334, 01.09.2017
https://doi.org/10.15832/ankutbd.447642

Abstract

References

  • Bisgrove S R (2008). The roles of microtubules in tropisms. Plant Science 175(6): 747-755
  • Chen H & Han R (2015). F-actin participates in the process of the “partition-bundle division”. Russian Journal of Plant Physiology 62(2): 187-194
  • Cleary A L & Hardham A R (1993). Pressure induced reorientation of cortical microtubules in epidermal cells of Lolium rigidum leaves. Plant and Cell Physiology 34(7): 1003-1008
  • Eisinger W, Ehrhardt D & Briggs W (2012). Microtubules are essential for guard-cell function in Vicia and Arabidopsis. Molecular Plant 5(3): 601-610
  • Granger C L & Cyr R J (2000). Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD. Planta 210: 502-509
  • Granger C L & Cyr R J (2001). Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD. Protoplasma 216(3-4): 201-214
  • Guo A H, Gao L M, Li Y F & Han R (2010). Influence on microtubule in wheat mesophyll cell exposed to enhanced ultraviolet-B radiation and He-Ne laser irradiation. Guihaia 30(2): 250-255
  • Han R, Wang X, Yue M & Qi Z (2002). Effects of the enhanced UV-B radiation on the body cell mitosis of the wheat. Acta Genetica Sinica 29(6): 537-541
  • Hardham A R, Takemoto D & White R G (2008). Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biology 8(63): 1-14
  • Hectors K, Jacques E, Prinsen E, Guisez Y, Verbelen J P, Jansen M A & Vissenberg K (2010). UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana. Journal of Experimental Botany 61(15): 4339-4349
  • Hong Y Y, Zhang W H & Wang X M (2010). Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant, Cell & Environment 33(4): 627-635
  • Iwata K, Tazawa M & Itoh T (2001). Turgor pressure regulation and the orientation of cortical microtubules in Spirogyra cells. Plant and Cell Physiology 42(6): 594-598
  • Jansen M A (2002). Ultraviolet-B radiation effects on plants: İnduction of morphogenic responses. Physiologia Plantarum 116(3): 423-429
  • Kawamura E & Wasteneys G O (2008). MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. Journal of Cell Science 121: 4114-4123
  • Krasylenko Y A, Yemets A I, Sheremet Y A & Blume Y B (2012). Nitric oxide as a critical factor for perception of UV-B irradiation by microtubules in Arabidopsis. Physiologia Plantarum 145(4): 505-515
  • Krasylenko Y A, Yemets A I & Blume Y B (2013). Plant microtubules reorganization under the indirect UV-B exposure and during UV-B-induced programmed cell death. Plant Signaling & Behavior 8(5): e24031, doi: 10.4161/psb.24031
  • Liu J Y, Wang B C, Zhang Y G, Wang Y C, Kong J, Zhu L Q, Yang X Y & Zha G D (2014). Microtubule dynamics is required for root elongation growth under osmotic stress in Arabidopsis. Plant Growth Regulation 74: 187-192
  • Lucas J R, Nadeau J A & Sack F D (2006). Microtubule arrays and Arabidopsis stomatal development. Journal of Experimental Botany 57(1): 71-79
  • Marc J, Granger C L, Brincat J, Fisher D D, Kao T, McCubbin A G & Cyr R J (1998). A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. The Plant Cell 10(11): 1927-1939
  • Nakamura M, Naoi K, Shoji T & Hashimoto T (2004). Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells. Plant and Cell Physiology 45(9): 1330-1334
  • Robson T M & Aphalo P J (2012). Species-specific effect of UV-B radiation on the temporal pattern of leaf growth. Physiologia Plantarum 144(2): 146-160
  • Robson T M, Klem K, Urban O & Jansen M A (2015). Reinterpreting plant morphological responses to UV-B radiation. Plant, Cell & Environment 38(5): 856-866
  • Rozema J, Staaij J V, Björn L O & Caldwell M (1997). UV-B as an environmental factor in plant life: stress and regulation. Trends in Ecology & Evolution 12(1): 22-28
  • Sedbrook J C (2004). MAPs in plant cells: Delineating microtubule growth dynamics and organization. Current Opinion in Plant Biology 7(6): 632-640
  • Shi L C, Wang B C, Gong W, Zhang Y G, Zhu L Q & Yang X Y (2011). Actin filaments and microtubules of Arabidopsis suspension cells show different responses to changing turgor pressure. Biochemical and Biophysical Research Communications 405(4): 632-637
  • Voigt B, Timmers A C, Šamaj J, Müller J, Baluška F & Menzel D (2005). GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. European Journal of Cell Biology 84(6): 595-608
  • Wasteneys G O & Yang Z B (2004). New views on the plant cytoskeleton. Plant Physiology 136(4): 38843891
  • Yu R, Huang R F, Wang X C & Yuan M (2001). Microtubule dynamics are involved in stomatal movement of Vicia faba L. Protoplasma 216: 113-118
  • Zhang J W & Zhou Q (2009). Effect of UV-B radiation on water metabolism in plants (in Chinese). Chinese Journal of Eco-Agriculture 17(4): 829-833

Comparison of Microtubule Organization in Arabidopsis thaliana TUBGFP and MBD-GFP Mutants Exposed to UV-B Radiation

Year 2017, Volume: 23 Issue: 3, 328 - 334, 01.09.2017
https://doi.org/10.15832/ankutbd.447642

Abstract

Microtubule organization was compared between the Arabidopsis thaliana TUB-GFP and MBD-GFP mutants. Plant height and primary root length were measured, and microtubule dynamics were examined by confocal laser scanning microscopy after UV-B radiation to reveal changes in microtubules. Damage caused by UV-B was comparable between transgenic lines and wild-type plants, although transgenic lines were more sensitive to UV-B than the wild-type. Spots and depolymerization of microtubules were detected in both TUB-GFP and MBD-GFP plants; however, MBD-GFP showed better adaptation of changes induced by UV-B treatment. These results indicated that UV-B inhibits the growth and development of transgenic lines, and the inhibitory effects might result from changes in microtubules, as determined by comparison between the TUB-GFP and MBD-GFP lines. 

References

  • Bisgrove S R (2008). The roles of microtubules in tropisms. Plant Science 175(6): 747-755
  • Chen H & Han R (2015). F-actin participates in the process of the “partition-bundle division”. Russian Journal of Plant Physiology 62(2): 187-194
  • Cleary A L & Hardham A R (1993). Pressure induced reorientation of cortical microtubules in epidermal cells of Lolium rigidum leaves. Plant and Cell Physiology 34(7): 1003-1008
  • Eisinger W, Ehrhardt D & Briggs W (2012). Microtubules are essential for guard-cell function in Vicia and Arabidopsis. Molecular Plant 5(3): 601-610
  • Granger C L & Cyr R J (2000). Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD. Planta 210: 502-509
  • Granger C L & Cyr R J (2001). Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD. Protoplasma 216(3-4): 201-214
  • Guo A H, Gao L M, Li Y F & Han R (2010). Influence on microtubule in wheat mesophyll cell exposed to enhanced ultraviolet-B radiation and He-Ne laser irradiation. Guihaia 30(2): 250-255
  • Han R, Wang X, Yue M & Qi Z (2002). Effects of the enhanced UV-B radiation on the body cell mitosis of the wheat. Acta Genetica Sinica 29(6): 537-541
  • Hardham A R, Takemoto D & White R G (2008). Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biology 8(63): 1-14
  • Hectors K, Jacques E, Prinsen E, Guisez Y, Verbelen J P, Jansen M A & Vissenberg K (2010). UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana. Journal of Experimental Botany 61(15): 4339-4349
  • Hong Y Y, Zhang W H & Wang X M (2010). Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant, Cell & Environment 33(4): 627-635
  • Iwata K, Tazawa M & Itoh T (2001). Turgor pressure regulation and the orientation of cortical microtubules in Spirogyra cells. Plant and Cell Physiology 42(6): 594-598
  • Jansen M A (2002). Ultraviolet-B radiation effects on plants: İnduction of morphogenic responses. Physiologia Plantarum 116(3): 423-429
  • Kawamura E & Wasteneys G O (2008). MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. Journal of Cell Science 121: 4114-4123
  • Krasylenko Y A, Yemets A I, Sheremet Y A & Blume Y B (2012). Nitric oxide as a critical factor for perception of UV-B irradiation by microtubules in Arabidopsis. Physiologia Plantarum 145(4): 505-515
  • Krasylenko Y A, Yemets A I & Blume Y B (2013). Plant microtubules reorganization under the indirect UV-B exposure and during UV-B-induced programmed cell death. Plant Signaling & Behavior 8(5): e24031, doi: 10.4161/psb.24031
  • Liu J Y, Wang B C, Zhang Y G, Wang Y C, Kong J, Zhu L Q, Yang X Y & Zha G D (2014). Microtubule dynamics is required for root elongation growth under osmotic stress in Arabidopsis. Plant Growth Regulation 74: 187-192
  • Lucas J R, Nadeau J A & Sack F D (2006). Microtubule arrays and Arabidopsis stomatal development. Journal of Experimental Botany 57(1): 71-79
  • Marc J, Granger C L, Brincat J, Fisher D D, Kao T, McCubbin A G & Cyr R J (1998). A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. The Plant Cell 10(11): 1927-1939
  • Nakamura M, Naoi K, Shoji T & Hashimoto T (2004). Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells. Plant and Cell Physiology 45(9): 1330-1334
  • Robson T M & Aphalo P J (2012). Species-specific effect of UV-B radiation on the temporal pattern of leaf growth. Physiologia Plantarum 144(2): 146-160
  • Robson T M, Klem K, Urban O & Jansen M A (2015). Reinterpreting plant morphological responses to UV-B radiation. Plant, Cell & Environment 38(5): 856-866
  • Rozema J, Staaij J V, Björn L O & Caldwell M (1997). UV-B as an environmental factor in plant life: stress and regulation. Trends in Ecology & Evolution 12(1): 22-28
  • Sedbrook J C (2004). MAPs in plant cells: Delineating microtubule growth dynamics and organization. Current Opinion in Plant Biology 7(6): 632-640
  • Shi L C, Wang B C, Gong W, Zhang Y G, Zhu L Q & Yang X Y (2011). Actin filaments and microtubules of Arabidopsis suspension cells show different responses to changing turgor pressure. Biochemical and Biophysical Research Communications 405(4): 632-637
  • Voigt B, Timmers A C, Šamaj J, Müller J, Baluška F & Menzel D (2005). GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. European Journal of Cell Biology 84(6): 595-608
  • Wasteneys G O & Yang Z B (2004). New views on the plant cytoskeleton. Plant Physiology 136(4): 38843891
  • Yu R, Huang R F, Wang X C & Yuan M (2001). Microtubule dynamics are involved in stomatal movement of Vicia faba L. Protoplasma 216: 113-118
  • Zhang J W & Zhou Q (2009). Effect of UV-B radiation on water metabolism in plants (in Chinese). Chinese Journal of Eco-Agriculture 17(4): 829-833
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Dongjing Ma This is me

Huize Chen This is me

Rong Han This is me

Publication Date September 1, 2017
Submission Date October 27, 2015
Acceptance Date January 12, 2016
Published in Issue Year 2017 Volume: 23 Issue: 3

Cite

APA Ma, D., Chen, H., & Han, R. (2017). Comparison of Microtubule Organization in Arabidopsis thaliana TUBGFP and MBD-GFP Mutants Exposed to UV-B Radiation. Journal of Agricultural Sciences, 23(3), 328-334. https://doi.org/10.15832/ankutbd.447642

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).