Research Article
BibTex RIS Cite

Küçük Bir Santrifüj Pompanın Sabit ve Değişken Hızlı Çalışma Koşullarında Enerji Etkinliğinin Karşılaştırılması

Year 2016, Volume: 22 Issue: 3, 444 - 454, 01.05.2016
https://doi.org/10.1501/Tarimbil_0000001402

Abstract

Bu çalışmanın amacı, küçük bir santrifüj pompanın kullanıldığı sulama sisteminde farklı hatlarda kullanılan debi ayar vanalarının ve değişken hızlı sürücü DHS kullanımının enerji etkinliğinin karşılaştırılmasıdır. Testler; emme vanası, basma vanası, by-pass vanası ve değişken hız kontrolü kullanılarak gerçekleştirilmiştir. Denemeler; sabit debi ve değişken hız şartlarında dört tekrarlı, sabit basınç çalışma koşullarında üç tekrarlı yapılmıştır. Her bir testte, farklı debilerde güç tüketimi, emme basıncı ve çıkış basınçları ölçülmüştür. İşletme noktasındaki sabit hız testlerinde by-pass vanası, çıkış vanasına ve giriş vanasına göre sırasıyla % 66 ve % 5 daha fazla enerji kazancı sağlamıştır. Debinin % 20 azaltılması, by-pass ve giriş vanası kullanıldığında enerji tüketimini % 7 azaltırken çıkış vanasında % 19 artırmıştır. DHS kullanımı; sabit hız testlerinde kullanılan by-pass, giriş ve çıkış vanalarına göre % 41, % 44 ve % 80 daha az enerji kullanımıyla çok önemli avantaj sağlamıştır. Ayrıca, DHS ile by-pass vanası sabit basınç testleri ile karşılaştırılmıştır. DHS 4.0 bar ile 2.5 bar arasında % 2 ile % 37 arasında enerji kazancı sağlamıştır. Enerji kazancı, yüksek debilerde daha az iken debi gereksinimi düştükçe kazanç hızla artmıştır. Sabit devir testlerinde bulunan düşük sistem verimi, kullanılan pompa ve hidrolik sistemin küçük basınçlı çalışmalar için uygun olmadığını göstermiştir. Sabit basınç testlerine göre, DHS’nün sistem verimi % 26-29.1 , by-pass vanasından % 21.3-25.5 daha yüksektir. Sonuç olarak, DHS enerji yönüyle en etkin yöntemdir ve küçük debili sistemlerde önemli oranda enerji kazancı sağlayabilmektedir

References

  • ABB (2013). Case: Riecorfarming. 3AUA0000152416 REV A EN 15.11.2013. http://www.abb.com/drivespartners, pp. 1-4 (Access Date: 15 November 2013)
  • Barutçu F, Lamaddalena N & Fratino U (2007). Energy saving for a pumping station serving an on-demand irrigation system: A study case. In: Water Saving in Mediterranean Agriculture and Future Research Needs, eds. Lamaddalena N., Bogliotti C., Todorovic M., Scardigno A. 56(1): 367-379
  • Boyadjis P (2004). Detecting a hidden lateral rotor natural frequency in a sewage pump, www. Pump-Zone.com, Pumps & Systems
  • Carrillo Cobo M T, Rodriquez Diaz J A, Montesinos P, Lopez Luque R & Camacho Poyato E (2011). Low energy consumption seasonal calendar for sectoring operation in pressurized irrigation networks. Irrigation Science 29: 157-169
  • City Pump (2014). City Pumps. http://www.citypumps.it/ enter_gb.html (Access Date: 04 April 2014)
  • Coates R & Brown P (2005). Precision irrigation and fertilization in orchards. In: 2005 Annual International Meeting, ASAE Paper Number: 052214, 17-20 July, Tampa, Florida, pp. 1-16
  • Han Y J, Khalilian A, Owino T O, Farahani H J & Moore S (2009). Development of Clemson variable-rate lateral irrigation system. Computers and Electronics in Agriculture 68(1): 108-113
  • ITRC (2011). Irrigation system components and potentials for energy conservation. Irrigation Training Research Center, California Energy Commission, Public Interest Energy Research (PIER) Program, ICTR Report No. R 11-003, pp. 32. http://www.ictr.org/ reports/components.html (Access Date: 27 July 2014)
  • Lamaddalena N & Khila S (2012). Energy saving with variable speed pumps in on-demand irrigation systems. Irrigation Science 30(2): 157-166
  • LaRue J L (2011). Variable rate irrigation 2010 field results for Center Plains Conference. In: Proceedings of the 23rd Annual Central Plains Irrigation Conference, Burlington, CO., February 22-23, Available from CPIA, 760 N. Thompson, Colby, Kansas, pp. 135-143
  • Martin D L, Kranz W L, Dorn T W, Melvin S R & Corr A J (2010). Reducing the cost of pumping irrigation water. In: Proceedings of the 23rd Annual Central Plains Irrigation Conference, Burlington, CO., February 22- 23, Available from CPIA, 760 N. Thompson, Colby, Kansas, pp. 41-50
  • NRCS (2010). Variable Speed Drive (VSD) for irrigation pumping. Natural Resources Conservation Service, Engineering Technical Note No. MT-14, Montana, US, pp. 1-36
  • Provenzano G (2007). Using HYDRUS-2D simulation model to evaluate wetted soil volume in subsurface drip irrigation systems. Journal of Irrigation and Drainage Engineering 133(4): 342-349
  • Rocamora C, Vera C & Abadia R (2013). Strategy for efficient energy management to solve energy problems in modernized irrigation: Analysis of the Spanish case. Irrigation Science 31: 1139-1158
  • Sahib A A (2014). Comparison of Energy Efficiencies of Constant and Variable Flow Rate Operations with a Small Scale Irrigation Pump. MSc Thesis, Kahramanmaras Sutcu İmam University Institute for Graduate Studies in Science and Technology, Kahramanmaraş, Turkey
  • Sobhy M G, Samir M A & Dalia M E (2011). Dynamic performance application of a variable speed centrifugal pump, In: Fifteenth International Water Technology Conference, IWTC 15 2011, Alexandria, Egypt
  • UNEP (2006). Electrical Energy Equipment: Pumps and Pumping Systems. In: Energy Efficiency Guide for Industry in Asia. United Nations Environment Programme. pp. 1-19. http://www. energyefficiencyasia.org (Access Date: 18 June 2014)
  • Urrestarazu L P & Burt C M (2012). Characterization of pumps for irrigation in central California: Potential energy savings. Journal of Irrigation and Drainage Engineering 138: 815-822

Comparison of Energy Efficiencies of a Small Centrifugal Pump at Constant and Variable Speed Operations

Year 2016, Volume: 22 Issue: 3, 444 - 454, 01.05.2016
https://doi.org/10.1501/Tarimbil_0000001402

Abstract

The objective of this study was to compare the energy efficiencies of flow rate valves used in different lines and variable speed drive VSD in a small centrifugal pump irrigation system. The tests were done by using an outlet valve, inlet valve, by-pass valve, and VSD. The study included four replications of constant speed and variable speed experiments, and three replications of constant pressure experiments. In each test, power consumption, inlet pressure, and outlet pressure were measured at different flow rates. During the constant speed tests at about the operating point, by-pass valve saved energy up to 66% and 5% compared to the outlet valve and inlet valve, respectively. Reducing the flow rate by 20% resulted in 7% less energy consumption with the use of both the by-pass valve and the inlet valve, and 19% more energy consumption with the outlet valve. The use of VSD showed profound advantage over the valves used in constant speed tests, with 41%, 44%, and 80% less energy demand compared to the by-pass, inlet, and outlet valve, respectively. Also, VSD and by-pass valves were compared in constant pressure operations. VSD offered 2 to 37% less energy consumption at pressures from 4.0 bar to 2.5 bar. The savings were less at high flow rates and quickly increased as the flow rate need decreased. The low system efficiency found in constant speed tests suggested that the pump was not appropriate for the hydraulic system used in low pressure applications. According to constant pressure tests, the system efficiency for VSD 26-29.1% was greater than that of the by-pass valve 21.3-25.5% . In conclusion, the VSD was the most energy efficient method and suggested significant energy savings in small powered pump systems

References

  • ABB (2013). Case: Riecorfarming. 3AUA0000152416 REV A EN 15.11.2013. http://www.abb.com/drivespartners, pp. 1-4 (Access Date: 15 November 2013)
  • Barutçu F, Lamaddalena N & Fratino U (2007). Energy saving for a pumping station serving an on-demand irrigation system: A study case. In: Water Saving in Mediterranean Agriculture and Future Research Needs, eds. Lamaddalena N., Bogliotti C., Todorovic M., Scardigno A. 56(1): 367-379
  • Boyadjis P (2004). Detecting a hidden lateral rotor natural frequency in a sewage pump, www. Pump-Zone.com, Pumps & Systems
  • Carrillo Cobo M T, Rodriquez Diaz J A, Montesinos P, Lopez Luque R & Camacho Poyato E (2011). Low energy consumption seasonal calendar for sectoring operation in pressurized irrigation networks. Irrigation Science 29: 157-169
  • City Pump (2014). City Pumps. http://www.citypumps.it/ enter_gb.html (Access Date: 04 April 2014)
  • Coates R & Brown P (2005). Precision irrigation and fertilization in orchards. In: 2005 Annual International Meeting, ASAE Paper Number: 052214, 17-20 July, Tampa, Florida, pp. 1-16
  • Han Y J, Khalilian A, Owino T O, Farahani H J & Moore S (2009). Development of Clemson variable-rate lateral irrigation system. Computers and Electronics in Agriculture 68(1): 108-113
  • ITRC (2011). Irrigation system components and potentials for energy conservation. Irrigation Training Research Center, California Energy Commission, Public Interest Energy Research (PIER) Program, ICTR Report No. R 11-003, pp. 32. http://www.ictr.org/ reports/components.html (Access Date: 27 July 2014)
  • Lamaddalena N & Khila S (2012). Energy saving with variable speed pumps in on-demand irrigation systems. Irrigation Science 30(2): 157-166
  • LaRue J L (2011). Variable rate irrigation 2010 field results for Center Plains Conference. In: Proceedings of the 23rd Annual Central Plains Irrigation Conference, Burlington, CO., February 22-23, Available from CPIA, 760 N. Thompson, Colby, Kansas, pp. 135-143
  • Martin D L, Kranz W L, Dorn T W, Melvin S R & Corr A J (2010). Reducing the cost of pumping irrigation water. In: Proceedings of the 23rd Annual Central Plains Irrigation Conference, Burlington, CO., February 22- 23, Available from CPIA, 760 N. Thompson, Colby, Kansas, pp. 41-50
  • NRCS (2010). Variable Speed Drive (VSD) for irrigation pumping. Natural Resources Conservation Service, Engineering Technical Note No. MT-14, Montana, US, pp. 1-36
  • Provenzano G (2007). Using HYDRUS-2D simulation model to evaluate wetted soil volume in subsurface drip irrigation systems. Journal of Irrigation and Drainage Engineering 133(4): 342-349
  • Rocamora C, Vera C & Abadia R (2013). Strategy for efficient energy management to solve energy problems in modernized irrigation: Analysis of the Spanish case. Irrigation Science 31: 1139-1158
  • Sahib A A (2014). Comparison of Energy Efficiencies of Constant and Variable Flow Rate Operations with a Small Scale Irrigation Pump. MSc Thesis, Kahramanmaras Sutcu İmam University Institute for Graduate Studies in Science and Technology, Kahramanmaraş, Turkey
  • Sobhy M G, Samir M A & Dalia M E (2011). Dynamic performance application of a variable speed centrifugal pump, In: Fifteenth International Water Technology Conference, IWTC 15 2011, Alexandria, Egypt
  • UNEP (2006). Electrical Energy Equipment: Pumps and Pumping Systems. In: Energy Efficiency Guide for Industry in Asia. United Nations Environment Programme. pp. 1-19. http://www. energyefficiencyasia.org (Access Date: 18 June 2014)
  • Urrestarazu L P & Burt C M (2012). Characterization of pumps for irrigation in central California: Potential energy savings. Journal of Irrigation and Drainage Engineering 138: 815-822
There are 18 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Selçuk Arslan This is me

Alaa Abdulradha Sahib This is me

Publication Date May 1, 2016
Submission Date January 1, 2016
Published in Issue Year 2016 Volume: 22 Issue: 3

Cite

APA Arslan, S., & Sahib, A. A. (2016). Küçük Bir Santrifüj Pompanın Sabit ve Değişken Hızlı Çalışma Koşullarında Enerji Etkinliğinin Karşılaştırılması. Journal of Agricultural Sciences, 22(3), 444-454. https://doi.org/10.1501/Tarimbil_0000001402

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).