Research Article
BibTex RIS Cite

Domates Bitkisinde Kurşun Pb ve Kadminyumun Cd Lipid Peroksidasyonu, Katalaz CAT Enzim Aktivitesi ve Gen Ekpresyon Profiline Etkisi

Year 2016, Volume: 22 Issue: 4, 539 - 547, 01.09.2016
https://doi.org/10.1501/Tarimbil_0000001411

Abstract

Önemli bir abiyotik stres faktörü olan ağır metaller bitkilerde çok çeşitli yanıt mekanizmalarını uyarabilirler. Bu yanıt mekanizmaları; membran kompozisyonunda değişiklik, küçük molekül ve serbest radikallerin üretimi, antioksidant enzimlerin aktivitelerinin ya da gen ekspresyonlarının değişimini içerir. Bu sebeple, bu araştırmada çeşitli konsantrasyonlardaki 0, 80, 160, 320, 640 ve 1280 μM Pb2+ve Cd2+ kontaminasyonuna maruz kalan domates bitkilerinde lipid peroksidasyon seviyesi MDA , katalaz enzim aktivitesi ve real-time PCR aracılığı ile katalaz gen ekpresyon seviyesi belirlenmiştir. 320 ve 640 μM Cd+2 kontaminasyonu hariç tüm Cd+2 ve Pb+2 kontaminasyonları lipid peroksidasyonuna ve katalaz enzim aktivitesinde artışa neden olmuştur. Sonuç olarak; çeşitli konsantrasyonlarda Pb2+ ve Cd2+ kontaminasyonuna maruz kalan domates bitkisinde, CAT gen ekpresyonu ve lipid peroksidayonu arasında pozitif korelasyon bulunurken, CAT gen ekpresyonu ve enzim aktivitesi arasında korelasyon tespit edilememiştir. Bu durum genlerin transkripsiyonel, posttranskripsiyonel ve aynı zamanda translasyonel veya posttranslasyonel seviyelerdeki regülasyonu ile açıklanabilir

References

  • Aebi H (1984). Catalase in vitro. Methods in Enzymology 105: 121-126
  • Asada K & Takahashi M (1987). Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CJ, Artzen CJ, editors. Photoinhibition: Topics in Photosynthesis. Amsterdam, Elsevier, pp. 227-287
  • Ben Ammar W, Nouairi I, Tray B, Zarrouk M, Jemal F & Ghorbel M H (2005). Cadmium effects on mineral nutrition and lipid contents in tomato leaves (in French). Journal of Social Biology 199: 157-163
  • Cervilla L M, Blasco B, Rios J J, Romero L & Ruiz J M (2007). Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Annals of Botany 100: 747-756
  • Cui L, Lee H S, Ndinteh D T, Mbafor J T, Kim Y H, Tv L E, Nguyen P H & Wk O H (2010). New prenylated flavanones from Erythrina abyssinica with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Planta Medica 76: 713-718
  • El-Beltagi H S, Mohamed A A & Rashed M M (2010). Response of antioxidative enzymes to cadmium stress in leaves and roots of radish (Raphanus sativus L.). Notulae Scientia Biologicae 2: 76-82
  • Farrel R E (2007). The regulation of gene expression in plants and animals. In: Bassett CL, editor. Regulation of Gene Expression in Plants: The Role of Transcript Structure and Processing. New York, NY: Springer, pp. 1-34
  • Fortunato A, Lidon F C, Batista-Santos P, Leitão A E, Pais I P, Ribeiro A I & Ramalho J C (2010). Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. Journal of Plant Physiology 167: 333-342
  • Gaur A & Grupa S K (1994). Lipid components of mustard seeds (Brassica juncea L.) as influenced by cadmium levels. Plant Food for Human Nutrition 46: 93-102
  • Goupil P, Souguir D, Ferjani E, Faure O, Hitmi A & Ledoigt G (2009). Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution. Journal of Plant Physiology 166: 1446-1452
  • Gratao P L, Polle A, Lea P J & Azevedo R A (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology 32: 481-494
  • Henriques F (2003). Gas exchange, chlorophyll a fluorescence kinetics and lipid peroxidation of pecan leaves with varying manganese concentrations. Plant Science 165: 239-244
  • Hernandez J A, Olmos E, Corpas F J, Sevilla F & De1 Rio L A (1995). Salt-induced oxidative stress in chloroplasts of pea plants. Plant Science 105: 151-167
  • Hodges D M, Delong J M, Forney C F & Prange R K (1999). Improving the thiobarbituric acid-reactive- substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207: 604-611
  • Jovanovic Z, Milosevic J & Radovic S (2006). Antioxidative enzymes in the response of buckwheat (Fagopyrum esculentum Moench) to ultraviolet B radiation. Journal of Agriculture and Food Chemistry 54: 9472-9478
  • Kabata-Pendias A & Pendias H (1989). Trace Elements in the Soil and Plants. Boca Raton, CRC Pres
  • Krupa Z & Baszynski T (1985). Effects of cadmium on the acyl lipid content and fatty acid composition in thylakoid membranes isolated from tomato leaves. Acta Physiology Plantarum 7: 55-64
  • Krupa Z & Baszynski T (1989). Acyl lipid composition of thylakoid membranes of cadmium-treated tomato plants. Acta Physiology Plantarum 11: 111-116
  • Lake D L, Kirk P W W & Lester J N (1984). Fractionation, characterization, and speciation of Heavy metals in sewage and sludge amended soil: A review. Jornal of Environmental Quality 13: 175-183
  • Lee S H & An C S (2005). Differential expression of three catalase genes in hot pepper (Capsicum annuum L.). Molecules and Cells 20: 247-255
  • Lima L, Seabra A, Melo P, Cullimore J & Carvalho H (2006). Phosphorylation and subsequent interaction with 14-3-3 protein regulates plastid glutamine synthetase in Medicago truncatula. Planta 223: 558-567
  • Livak K J & Schmittgen T D (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402- 408
  • Lyons J M (1973). Chilling injury in plants. Annual Review of Plant Physiology 24: 445-466
  • Malik D, Sheoran I S & Singh R (1992). Lipid composition of thylakoid membranes of cadmium treated wheat seedlings. Indian Journal of Biochemistry & Biophysics 29: 350-354
  • Matsumura H, Xie Y, Shirakata S, Inoue T, Yoshinaga T, Ueno Y, Izui K & Kai Y (2002). Crystal structures of C4 form maize and quaternary complex of E. coli phosphoenolpyruvate carboxylases. Structure 10: 1721-1730
  • Mead J F (1976). Free radical mechanisms of lipid damage and consequences for cellular membranes. In: WA Pryor, editor. Free Radicals in Biology, Vol 1. New York, Academic Press, pp. 51-68
  • Mittler R (2002). Oxidative stress, antioxidants and stres tolerance. Trends in Plant Science 7: 405-410
  • Mittler R, Vanderauwera S, Gollery M & Van Breusegem F (2004). The reactive oxygen gene network in plants. Trends in Plant Science 9: 490-498
  • Mittova V, Theodoulou F L, Kiddle G, Gomez L, Volokita M, Tal M, Foyer C H & Guy M (2003). Coordinate induction of glutathione biosynthesis and glutathione- metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Letter 554: 417-421
  • NCBI (2013a). Nucleotide. http://www.ncbi.nlm.nih.gov/ nuccore/M93719.1 (Erişim tarihi: 10.01.2014)
  • NCBI (2013b). Nucleotide http://www.ncbi.nlm.nih. gov/nuccore/NM_001308447.1 17.01.2014) (Erişim tarihi
  • Nouairi I, Ben Ammar W, Ben Youssef N, Ben Mileddaoud D, Habibghorbal M & Zarrouk M (2006). Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Science 170: 511-519
  • Polle A, Chakrabarti K, Chakrabarti S, Seifert F, Schramel P & Rennenberg H (1992). Antioxidants and manganese deficiency in needles of Norway spruce (Picea abies L.) trees. Plant Physiology 99: 1084-1089
  • Qilin D, Jin W, Bin F, Tingting L, Chen C, Honghui L & Shizhang D (2009). Molecular cloning and characterization of a new peroxidase gene (OvRCI) from Orychophragmus violaceus. African Journal of Biotechnology 8(23): 6511-6517
  • Quariti O, Boussama N, Zarrouk M, Cherif A & Ghorbalm H (1997). Cadmium and copper-induced changes in tomato membrane lipids. Phytochemistry 45: 1343- 1350
  • Rao A Q, Hussain S S, Shahzad M S, Bokhari Sy A, Raza M H, Rakha A, Majeed A, Shahid A A, Saleem Z, Husnain T & Riazuddin S (2006). Somatic embryogenesis in wild relatives of cotton (Gossypium spp.). Journal of Zhejiang University Science B 7(3): 1673-1581
  • Schmidt M, Dehne S & Feierabend J (2002). Post- transcriptional mechanisms control catalase synthesis during its light-induced turnover in rye leaves through the availability of the hemin cofactor and reversible changes of the translation efficiency of mRNA. Plant Journal 31: 601-613
  • Scott D, Keoghan J M & Allen B E (1996). Native and low input grasses-a New Zealand high country perspective. New Zealand Journal of Agricultural Research 39: 499-512
  • Sharma R K, Agrawal M & Marshall F (2006). Heavy metals contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bulletin of Environmental Contamination and Toxicology 77: 312-318
  • Sharma R K, Agrawal M & Marshall F M (2007). Heavy metals contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety 66: 258-266
  • Shim I S, Momose Y, Yamamoto A, Kim D W & Usui K (2003). Inhibition of catalase activity by oxidative stress and its relationship to salicylic accumulation in plants. Plant Growth Regulation 39: 285-292
  • Sinha S, Saxena R & Singh S (2005). Chromium induced lipid peroxidation in the plants of Pistias tratiotes L., role of antioxidants and antioxidant enzymes. Chemosphere 58: 595-604
  • Skorzynska-Polit E, Drazkiewicz M & Krupa Z (2010). Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. Acta Physiology Plantarum 32: 169-175
  • Smirnoff N (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytology 125: 27-58
  • Soydam Aydın S, Büyük İ, Çelikkol B P & Aras S (2013). A role of catalase (CAT) in detoxification of reactive oxygen species (ROS) in tomato (Lycopersicum esculentum) contaminated with manganese (Mn2+). Biological Diversity and Conservation 6: 140-145
  • Trichopoulos D (1997). Epidemiology of Cancer. In: DeVita VT editor. Cancer: Principles and Practice of Oncology, Philadelphia, Lippincott Company, pp. 231-258
  • Türkdoğan M K, Kilicel F, Kara K, Tuncer I & Uygan I (2002). Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environmental Toxicology and Pharmacology 13: 175-179
  • Vassilev A (2004). Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biologia Plantarum 48: 153-156
  • Voutsa D A, Grimanis A & Samara C (1996). Trace elements in vegetables grown in industrial areas in relation to soil and air particulate matter environ. Environmental Pollution 94: 325-335
  • Wang D, Heckathorn S A, Barua D, Joshi P, Hamilton E W & Croix J L A (2008). Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C, C and CAM species. American Journal of Botany 3 4 95: 165-176

Effects of Lead Pb and Cadmium Cd Elements on Lipid Peroxidation, Catalase Enzyme Activity and Catalase Gene Expression Profile in Tomato Plants

Year 2016, Volume: 22 Issue: 4, 539 - 547, 01.09.2016
https://doi.org/10.1501/Tarimbil_0000001411

Abstract

Heavy metals are significant abiotic stress factor, affecting various response mechanisms in plants. These responses include: changes in membrane composition, production of small molecules and free radicals, and alterations in the activities of antioxidant enzymes and their gene expressions. For this reason, lipid peroxidation levels MDA , catalase enzyme activity, and gene expression profiles, quantified by real-time PCR, were analyzed in tomato plants exposed to various concentrations 0, 80, 160, 320, 640 and 1280 μM of Cd2+ and Pb2+. All concentration of Cd+2 or Pb+2 contamination led to increased lipid peroxidation and catalase enzyme activity, except for 320 and 640 μM Cd+2 contamination levels. As a result, gene expression patterns at the mRNA level and changes in MDA content under different concentrations of Pb+2 and Cd+2 contamination revealed a positive correlation, although no correlation was found between gene expression patterns at the mRNA level and catalase enzyme activity. These results might be explained by the regulation of genes at the transcriptional, posttranscriptional, and also translational or posttranslational levels

References

  • Aebi H (1984). Catalase in vitro. Methods in Enzymology 105: 121-126
  • Asada K & Takahashi M (1987). Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CJ, Artzen CJ, editors. Photoinhibition: Topics in Photosynthesis. Amsterdam, Elsevier, pp. 227-287
  • Ben Ammar W, Nouairi I, Tray B, Zarrouk M, Jemal F & Ghorbel M H (2005). Cadmium effects on mineral nutrition and lipid contents in tomato leaves (in French). Journal of Social Biology 199: 157-163
  • Cervilla L M, Blasco B, Rios J J, Romero L & Ruiz J M (2007). Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Annals of Botany 100: 747-756
  • Cui L, Lee H S, Ndinteh D T, Mbafor J T, Kim Y H, Tv L E, Nguyen P H & Wk O H (2010). New prenylated flavanones from Erythrina abyssinica with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Planta Medica 76: 713-718
  • El-Beltagi H S, Mohamed A A & Rashed M M (2010). Response of antioxidative enzymes to cadmium stress in leaves and roots of radish (Raphanus sativus L.). Notulae Scientia Biologicae 2: 76-82
  • Farrel R E (2007). The regulation of gene expression in plants and animals. In: Bassett CL, editor. Regulation of Gene Expression in Plants: The Role of Transcript Structure and Processing. New York, NY: Springer, pp. 1-34
  • Fortunato A, Lidon F C, Batista-Santos P, Leitão A E, Pais I P, Ribeiro A I & Ramalho J C (2010). Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. Journal of Plant Physiology 167: 333-342
  • Gaur A & Grupa S K (1994). Lipid components of mustard seeds (Brassica juncea L.) as influenced by cadmium levels. Plant Food for Human Nutrition 46: 93-102
  • Goupil P, Souguir D, Ferjani E, Faure O, Hitmi A & Ledoigt G (2009). Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution. Journal of Plant Physiology 166: 1446-1452
  • Gratao P L, Polle A, Lea P J & Azevedo R A (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology 32: 481-494
  • Henriques F (2003). Gas exchange, chlorophyll a fluorescence kinetics and lipid peroxidation of pecan leaves with varying manganese concentrations. Plant Science 165: 239-244
  • Hernandez J A, Olmos E, Corpas F J, Sevilla F & De1 Rio L A (1995). Salt-induced oxidative stress in chloroplasts of pea plants. Plant Science 105: 151-167
  • Hodges D M, Delong J M, Forney C F & Prange R K (1999). Improving the thiobarbituric acid-reactive- substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207: 604-611
  • Jovanovic Z, Milosevic J & Radovic S (2006). Antioxidative enzymes in the response of buckwheat (Fagopyrum esculentum Moench) to ultraviolet B radiation. Journal of Agriculture and Food Chemistry 54: 9472-9478
  • Kabata-Pendias A & Pendias H (1989). Trace Elements in the Soil and Plants. Boca Raton, CRC Pres
  • Krupa Z & Baszynski T (1985). Effects of cadmium on the acyl lipid content and fatty acid composition in thylakoid membranes isolated from tomato leaves. Acta Physiology Plantarum 7: 55-64
  • Krupa Z & Baszynski T (1989). Acyl lipid composition of thylakoid membranes of cadmium-treated tomato plants. Acta Physiology Plantarum 11: 111-116
  • Lake D L, Kirk P W W & Lester J N (1984). Fractionation, characterization, and speciation of Heavy metals in sewage and sludge amended soil: A review. Jornal of Environmental Quality 13: 175-183
  • Lee S H & An C S (2005). Differential expression of three catalase genes in hot pepper (Capsicum annuum L.). Molecules and Cells 20: 247-255
  • Lima L, Seabra A, Melo P, Cullimore J & Carvalho H (2006). Phosphorylation and subsequent interaction with 14-3-3 protein regulates plastid glutamine synthetase in Medicago truncatula. Planta 223: 558-567
  • Livak K J & Schmittgen T D (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402- 408
  • Lyons J M (1973). Chilling injury in plants. Annual Review of Plant Physiology 24: 445-466
  • Malik D, Sheoran I S & Singh R (1992). Lipid composition of thylakoid membranes of cadmium treated wheat seedlings. Indian Journal of Biochemistry & Biophysics 29: 350-354
  • Matsumura H, Xie Y, Shirakata S, Inoue T, Yoshinaga T, Ueno Y, Izui K & Kai Y (2002). Crystal structures of C4 form maize and quaternary complex of E. coli phosphoenolpyruvate carboxylases. Structure 10: 1721-1730
  • Mead J F (1976). Free radical mechanisms of lipid damage and consequences for cellular membranes. In: WA Pryor, editor. Free Radicals in Biology, Vol 1. New York, Academic Press, pp. 51-68
  • Mittler R (2002). Oxidative stress, antioxidants and stres tolerance. Trends in Plant Science 7: 405-410
  • Mittler R, Vanderauwera S, Gollery M & Van Breusegem F (2004). The reactive oxygen gene network in plants. Trends in Plant Science 9: 490-498
  • Mittova V, Theodoulou F L, Kiddle G, Gomez L, Volokita M, Tal M, Foyer C H & Guy M (2003). Coordinate induction of glutathione biosynthesis and glutathione- metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Letter 554: 417-421
  • NCBI (2013a). Nucleotide. http://www.ncbi.nlm.nih.gov/ nuccore/M93719.1 (Erişim tarihi: 10.01.2014)
  • NCBI (2013b). Nucleotide http://www.ncbi.nlm.nih. gov/nuccore/NM_001308447.1 17.01.2014) (Erişim tarihi
  • Nouairi I, Ben Ammar W, Ben Youssef N, Ben Mileddaoud D, Habibghorbal M & Zarrouk M (2006). Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Science 170: 511-519
  • Polle A, Chakrabarti K, Chakrabarti S, Seifert F, Schramel P & Rennenberg H (1992). Antioxidants and manganese deficiency in needles of Norway spruce (Picea abies L.) trees. Plant Physiology 99: 1084-1089
  • Qilin D, Jin W, Bin F, Tingting L, Chen C, Honghui L & Shizhang D (2009). Molecular cloning and characterization of a new peroxidase gene (OvRCI) from Orychophragmus violaceus. African Journal of Biotechnology 8(23): 6511-6517
  • Quariti O, Boussama N, Zarrouk M, Cherif A & Ghorbalm H (1997). Cadmium and copper-induced changes in tomato membrane lipids. Phytochemistry 45: 1343- 1350
  • Rao A Q, Hussain S S, Shahzad M S, Bokhari Sy A, Raza M H, Rakha A, Majeed A, Shahid A A, Saleem Z, Husnain T & Riazuddin S (2006). Somatic embryogenesis in wild relatives of cotton (Gossypium spp.). Journal of Zhejiang University Science B 7(3): 1673-1581
  • Schmidt M, Dehne S & Feierabend J (2002). Post- transcriptional mechanisms control catalase synthesis during its light-induced turnover in rye leaves through the availability of the hemin cofactor and reversible changes of the translation efficiency of mRNA. Plant Journal 31: 601-613
  • Scott D, Keoghan J M & Allen B E (1996). Native and low input grasses-a New Zealand high country perspective. New Zealand Journal of Agricultural Research 39: 499-512
  • Sharma R K, Agrawal M & Marshall F (2006). Heavy metals contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bulletin of Environmental Contamination and Toxicology 77: 312-318
  • Sharma R K, Agrawal M & Marshall F M (2007). Heavy metals contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety 66: 258-266
  • Shim I S, Momose Y, Yamamoto A, Kim D W & Usui K (2003). Inhibition of catalase activity by oxidative stress and its relationship to salicylic accumulation in plants. Plant Growth Regulation 39: 285-292
  • Sinha S, Saxena R & Singh S (2005). Chromium induced lipid peroxidation in the plants of Pistias tratiotes L., role of antioxidants and antioxidant enzymes. Chemosphere 58: 595-604
  • Skorzynska-Polit E, Drazkiewicz M & Krupa Z (2010). Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. Acta Physiology Plantarum 32: 169-175
  • Smirnoff N (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytology 125: 27-58
  • Soydam Aydın S, Büyük İ, Çelikkol B P & Aras S (2013). A role of catalase (CAT) in detoxification of reactive oxygen species (ROS) in tomato (Lycopersicum esculentum) contaminated with manganese (Mn2+). Biological Diversity and Conservation 6: 140-145
  • Trichopoulos D (1997). Epidemiology of Cancer. In: DeVita VT editor. Cancer: Principles and Practice of Oncology, Philadelphia, Lippincott Company, pp. 231-258
  • Türkdoğan M K, Kilicel F, Kara K, Tuncer I & Uygan I (2002). Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environmental Toxicology and Pharmacology 13: 175-179
  • Vassilev A (2004). Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biologia Plantarum 48: 153-156
  • Voutsa D A, Grimanis A & Samara C (1996). Trace elements in vegetables grown in industrial areas in relation to soil and air particulate matter environ. Environmental Pollution 94: 325-335
  • Wang D, Heckathorn S A, Barua D, Joshi P, Hamilton E W & Croix J L A (2008). Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C, C and CAM species. American Journal of Botany 3 4 95: 165-176
There are 50 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Semra Soydam Aydın This is me

İlker Büyük This is me

Esra Gökçe Gündüzer This is me

Burcu Pelin Büyük This is me

İrfan Kandemir This is me

Demet Cansaran-duman This is me

Sümer Aras This is me

Publication Date September 1, 2016
Submission Date January 1, 2016
Published in Issue Year 2016 Volume: 22 Issue: 4

Cite

APA Soydam Aydın, S., Büyük, İ., Gökçe Gündüzer, E., Büyük, B. P., et al. (2016). Effects of Lead Pb and Cadmium Cd Elements on Lipid Peroxidation, Catalase Enzyme Activity and Catalase Gene Expression Profile in Tomato Plants. Journal of Agricultural Sciences, 22(4), 539-547. https://doi.org/10.1501/Tarimbil_0000001411

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).