Research Article
BibTex RIS Cite

Canal Geometry, Flow Velocity, Dallisgrass (Paspalum dilatatum Poir.) Density and Soil Phosphorous Effects on Hydraulic Resistance of Vegetated Canals

Year 2016, Volume: 22 Issue: 2, 187 - 195, 01.03.2016
https://doi.org/10.1501/Tarimbil_0000001380

Abstract

Dallisgrass Paspalum dilatatum Poir. reduces discharges in irrigation canals and causes problems in operation and maintenance of canals. This study has been conducted to determine roughness coefficient in vegetated canals caused by dallisgrass and to investigate the relationship between available soil phosphorous and dry mass of dallisgrass. The study also aims to find out the relationships among roughness coefficient, dallisgrass density and soil phosphorous in vegetated canals in Moghan plain, Iran. The results showed that the roughness coefficient varied from 0.01 to 0.32 and averaged at 0.09. The variation in roughness coefficient in vegetated canals by dallisgrass may be explained solely by the flow velocity and canal slope, assuming that there are no spatial variability’s of the other affecting variables. Therefore, a regression model comprises both the roughness coefficient as a dependent variable and the flow velocity and canal slope as an independent variable is developed. The available soil phosphorus both on the sides and at the bottom of vegetated canals were from 4.2 to 37 mg kg-1. The highest dry mass of 16 kg per 100 m2 was acquired from the canal with soil phosphorus of 16.7 mg kg-1. Also, another model was developed to describe the roughness coefficient as a function of the flow velocity, canal slope, dallisgrass density and soil phosphorous. It is recommended that identifying phosphorus sources and limiting its distribution in irrigation canals is necessary to reduce the dallisgrass density in canals

References

  • Chow V T (1959). Open Channel Hydraulics. McGraw- Hill, New York, 680 pp
  • Esfandiari M & Maheshwari B L (1998). Suitability of selected flow equations and variation of Manning’s n in furrow irrigation. Journal of Irrigation and Drainage Engineering ASCE 124(2): 89-95
  • Harun-Ur-Rashid M (1990). Estimation of Manning’s roughness coefficient for basin and border irrigation. Agricultural Water Management 18: 29-33
  • Heermann D F, Wenstrom R J & Evans N A (1969). Prediction of flow resistance in furrows from soil roughness. Transactions of the ASAE 12: 482-489
  • Izadi B & Wallender W W (1985). Furrow hydraulic characteristics and infiltration. Transactions of the ASAE 28(6): 1901-1908
  • Karimi H (1995). Weed crops in Iran. Tehran University Publishing. Tehran. Iran
  • Khanjani M J & Barani G A (1997). Determination of roughness coefficient in border irrigation under corn cultivation. Agricultural Science Tabriz University 4: 79-92
  • Kostiakov A V (1932). On the dynamics of the coefficient of water percolation in soils and on the necessity for studying it from a dynamics point of view for purposes of amelioration. Transactions of the Sixth Commission of International Society of Soil Science, part A pp. 17-21
  • Kruse E G, Huntley C W & Robinson A R (1965). Flow resistance in simulated irrigation borders and furrows. Conservation Res Report # 3. USDA-Agricultural Research Service. Washington, DC
  • Mahdizadeh Khasraghi M, Gholami Sefidkouhi M A & Valipour M (2014). Simulation of open and closed- end border irrigation systems using SIRMOD. Archives of Agronomy and Soil Science 61: 929-941
  • Maheshwari B L & McMahon T A (1992). Modeling shallow overland flow in surface irrigation. Journal of Irrigation and Drainage Engineering ASCE 118(2): 201-217
  • Moghaddam M (2008). Advanced Engineering Statistics. Faculty of Agriculture, Department of Irrigation. Tabriz University (in Farsi). Iran
  • Nasseri A (2000). Flow resistance coefficient in vegetated canals. Iranian Agricultural Engineering Institute (IAERI). Agricultural Research and Education Organization (AREO). Iran. pp. 251
  • Nasseri A, Neyshabori M R, Fakherifard A, Moghaddam M & Nazemi A H (2004). Field measured furrow infiltration functions. Turkish Journal of Agriculture and Forestry 28: 93-99
  • Nasseri A, Neyshabori M R & Abbasi F (2008). Effectual components on furrow infiltration. Irrigation and Drainage 57: 481-489
  • Nasseri A & Abbasi F (2012). Furrow Roughness Coefficient: Estimation by Hydrodynamic Model, Infiltration Equation Response to It. LAP LAMBERT Academic Publishing. 52 pp
  • Olsen S R & Dean L A (1976). Phosphorus. In: Methods of soil analysis. Part 2: Physical and mineralogical properties, including statistics of measurement and sampling. 4th ed., (Ed. C.A. Black, D.D. Evans, L.E. Ensminger, J.L. White, F.E. Clark and R.C. Dinauer). Madison, WI, American Society of Agronomy. pp. 1035-1048
  • Ree W O (1949). Hydraulic characteristics of vegetation and vegetated waterways. Agricultural Engineering 30(4): 184-189
  • Sepaskhah A R & Bondar H (2002). Estimation of Manning roughness coefficient for bare and vegetated furrow irrigation. Biosystems Engineering 82(3): 351- 357
  • Tropical Forages (2009). Available at http://www. tropicalforages.info/key/Forages/Media/Html/ Paspalum_dilatatum.htm
  • Trout T J (1992). Furrow flow velocity effect on hydraulic roughness. Journal of Irrigation and Drainage Engineering ASCE 118: 981-987
  • USDA (US Department of Agriculture) (1974). Border Irrigation, Ch4, Sect15, National Engineering Handbook. Soil Conservation Service, Washington, DC, 55 pp
  • Valipour M & Montazar A A (2012a). An evaluation of SWDC and WinSRFR models to optimize of infiltration parameters in furrow irrigation. American Journal of Scientific Research 69: 128-142
  • Valipour M & Montazar A A (2012b). Optimize of all effective infiltration parameters in furrow irrigation using visual basic and genetic algorithm programming. Australian Journal of Basic and Applied Sciences 6(6): 132-137
  • Valipour M & Montazar A A (2012c). Sensitive analysis of optimized infiltration parameters in SWDC model. Advances in Environmental Biology 6(9): 2574-2581
  • Valipour M (2013). Increasing irrigation efficiency by management strategies: cutback and surge irrigation. ARPN Journal of Agricultural and Biological Science 8: 35-43
  • Walker W R (1989). Guidelines for Designing and Evaluating Surface Irrigation Systems. FAO. Rome. Italy

Otlanmış Kanallarda Kanal Geometrisi, Akış Hızı, Adi Yalancı Darı Paspalum dilatatum Poir. Yoğunluğu ve Toprak Fosfor Oranının Hidrolik Direnç Üzerine Etkisi

Year 2016, Volume: 22 Issue: 2, 187 - 195, 01.03.2016
https://doi.org/10.1501/Tarimbil_0000001380

Abstract

Adi yalancı darı Paspalum dilatatum Poir. sulama kanallarında akışı azaltmakta ve işletme-bakım sorunlarına neden olmaktadır. Bu çalışma, otlanmış kanallarda Adi yalancı darı’nın pürüzlülük katsayısını nasıl etkilediğini ve topraktaki mevcut fosfor ile adi yalancı darı kuru ağırlığı arasındaki ilişkiyi araştırmak amacıyla yapılmıştır. Ayrıca; çalışma İran’da Mogan ovasında bulunan otlanmış kanallardaki pürüzlülük katsayısı ile adi yalancı darı yoğunluğu ve topraktaki mevcut fosfor miktarı arasındaki ilişkiyi belirlemeyi de amaçlamaktadır. Araştırma sonucunda; pürüzlülük katsayısı değerleri 0.01-0.032 arasında değişmiş ve ortalama olarak 0.09 olarak bulunmuştur. Diğer değişkenlerin olmadığı varsayıldığında, adi yalancı darı ile otlanmış kanallardaki pürüzlülük katsayısı değişkenlerini, sadece akış hızı ve kanal eğiminin etkilediği söylenebilir. Bu nedenle; bağımlı değişken olarak pürüzlülük katsayısını, bağımsız değişken olarak da akış hızı ve kanal eğimini kapsayan regresyon modeli geliştirilmiştir. Otlanmış kanalların kenarlarında ve tabanındaki mevcut fosfor miktarı 4.2’den 37 mg kg-1’e kadar yükselmiştir. En yüksek kuru madde miktarı 16.7 mg kg-1 fosfora sahip kanaldan 100 m2’ye 16 kg olarak elde edilmiştir. Ayrıca, akış hızı fonksiyonu, kanal eğimi, adi yalancı darı yoğunluğu ve mevcut toprak fosforunu pürüzlülük katsayısı olarak tanımlayan başka bir model de geliştirilmiştir. Sonuç olarak; kanallardaki adi yalancı darı yoğunluğunu azaltmak için fosfor kaynaklarının belirlenmesi ve sulama kanallarının dağılımının sınırlandırılmasının gerekli olduğu önerilmektedir

References

  • Chow V T (1959). Open Channel Hydraulics. McGraw- Hill, New York, 680 pp
  • Esfandiari M & Maheshwari B L (1998). Suitability of selected flow equations and variation of Manning’s n in furrow irrigation. Journal of Irrigation and Drainage Engineering ASCE 124(2): 89-95
  • Harun-Ur-Rashid M (1990). Estimation of Manning’s roughness coefficient for basin and border irrigation. Agricultural Water Management 18: 29-33
  • Heermann D F, Wenstrom R J & Evans N A (1969). Prediction of flow resistance in furrows from soil roughness. Transactions of the ASAE 12: 482-489
  • Izadi B & Wallender W W (1985). Furrow hydraulic characteristics and infiltration. Transactions of the ASAE 28(6): 1901-1908
  • Karimi H (1995). Weed crops in Iran. Tehran University Publishing. Tehran. Iran
  • Khanjani M J & Barani G A (1997). Determination of roughness coefficient in border irrigation under corn cultivation. Agricultural Science Tabriz University 4: 79-92
  • Kostiakov A V (1932). On the dynamics of the coefficient of water percolation in soils and on the necessity for studying it from a dynamics point of view for purposes of amelioration. Transactions of the Sixth Commission of International Society of Soil Science, part A pp. 17-21
  • Kruse E G, Huntley C W & Robinson A R (1965). Flow resistance in simulated irrigation borders and furrows. Conservation Res Report # 3. USDA-Agricultural Research Service. Washington, DC
  • Mahdizadeh Khasraghi M, Gholami Sefidkouhi M A & Valipour M (2014). Simulation of open and closed- end border irrigation systems using SIRMOD. Archives of Agronomy and Soil Science 61: 929-941
  • Maheshwari B L & McMahon T A (1992). Modeling shallow overland flow in surface irrigation. Journal of Irrigation and Drainage Engineering ASCE 118(2): 201-217
  • Moghaddam M (2008). Advanced Engineering Statistics. Faculty of Agriculture, Department of Irrigation. Tabriz University (in Farsi). Iran
  • Nasseri A (2000). Flow resistance coefficient in vegetated canals. Iranian Agricultural Engineering Institute (IAERI). Agricultural Research and Education Organization (AREO). Iran. pp. 251
  • Nasseri A, Neyshabori M R, Fakherifard A, Moghaddam M & Nazemi A H (2004). Field measured furrow infiltration functions. Turkish Journal of Agriculture and Forestry 28: 93-99
  • Nasseri A, Neyshabori M R & Abbasi F (2008). Effectual components on furrow infiltration. Irrigation and Drainage 57: 481-489
  • Nasseri A & Abbasi F (2012). Furrow Roughness Coefficient: Estimation by Hydrodynamic Model, Infiltration Equation Response to It. LAP LAMBERT Academic Publishing. 52 pp
  • Olsen S R & Dean L A (1976). Phosphorus. In: Methods of soil analysis. Part 2: Physical and mineralogical properties, including statistics of measurement and sampling. 4th ed., (Ed. C.A. Black, D.D. Evans, L.E. Ensminger, J.L. White, F.E. Clark and R.C. Dinauer). Madison, WI, American Society of Agronomy. pp. 1035-1048
  • Ree W O (1949). Hydraulic characteristics of vegetation and vegetated waterways. Agricultural Engineering 30(4): 184-189
  • Sepaskhah A R & Bondar H (2002). Estimation of Manning roughness coefficient for bare and vegetated furrow irrigation. Biosystems Engineering 82(3): 351- 357
  • Tropical Forages (2009). Available at http://www. tropicalforages.info/key/Forages/Media/Html/ Paspalum_dilatatum.htm
  • Trout T J (1992). Furrow flow velocity effect on hydraulic roughness. Journal of Irrigation and Drainage Engineering ASCE 118: 981-987
  • USDA (US Department of Agriculture) (1974). Border Irrigation, Ch4, Sect15, National Engineering Handbook. Soil Conservation Service, Washington, DC, 55 pp
  • Valipour M & Montazar A A (2012a). An evaluation of SWDC and WinSRFR models to optimize of infiltration parameters in furrow irrigation. American Journal of Scientific Research 69: 128-142
  • Valipour M & Montazar A A (2012b). Optimize of all effective infiltration parameters in furrow irrigation using visual basic and genetic algorithm programming. Australian Journal of Basic and Applied Sciences 6(6): 132-137
  • Valipour M & Montazar A A (2012c). Sensitive analysis of optimized infiltration parameters in SWDC model. Advances in Environmental Biology 6(9): 2574-2581
  • Valipour M (2013). Increasing irrigation efficiency by management strategies: cutback and surge irrigation. ARPN Journal of Agricultural and Biological Science 8: 35-43
  • Walker W R (1989). Guidelines for Designing and Evaluating Surface Irrigation Systems. FAO. Rome. Italy
There are 27 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Abolfazl Nasserı This is me

Publication Date March 1, 2016
Submission Date January 1, 2016
Published in Issue Year 2016 Volume: 22 Issue: 2

Cite

APA Nasserı, A. (2016). Canal Geometry, Flow Velocity, Dallisgrass (Paspalum dilatatum Poir.) Density and Soil Phosphorous Effects on Hydraulic Resistance of Vegetated Canals. Journal of Agricultural Sciences, 22(2), 187-195. https://doi.org/10.1501/Tarimbil_0000001380

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).