BibTex RIS Cite

Physio-Biochemical and Molecular Responses in Transgenic Cotton under Drought Stress

Year 2017, Volume: 23 Issue: 2, 157 - 166, 01.03.2017

Abstract

Drought decreases the growth and productivity in cotton. Heat shock proteins accumulate in plants under water stress to protect the biochemical and physiological processes at the molecular level. In this study, plants of T2 segregatinggenerationof transgenic cotton, containing small heat shock protein gene GHSP26 was compared with wild type plants for biochemical, physiological and molecular responses under different periods of drought stress. Transgenic plants accumulated 30% higher proline content than the wild type. Lipid peroxidation activity was reduced in transgenic plants which showed that the drought tolerance efficiency has been improved. Leaf relative water content was 69% and 45% in transgenic and wild-type plants, respectively at 10-day drought stress. Similarly, transgenic plants showed better performance for photosynthesis, stomatal conductance, transpiration and osmotic potential as compared to wild type. Real-time quantitative PCR of GHSP26 and some other drought responsive genes such as Gh-POD, Gh-RuBisCO, Gh-LHCP PSII, Gh-PIP, Gh-TPS and Gh-LEA have supported the higher expression and proved drought tolerance in transgenic plants. The overexpression of GHSP26 in transgenic plants improved the biochemical such as proline content and lipid peroxidation activity and physiological parameters like photosynthesis, osmotic potential and water related attributes. Hence, this study may be extended for selection of homozygous lines and breeding to improve the drought tolerance activity in plants

References

  • Akram M, Ashraf M, Jamil M, Iqbal R, Nafees M & Khan M (2011). Nitrogen application improves gas exchange characteristics and chlorophyll fluorescence in maize hybrids under salinity conditions. Russian Journal of Plant Physiology 58: 394-401
  • Al-Whaibi M (2011). Plant heat-shock proteins: A mini review. Journal of King Saud University Science 23: 139-150
  • Ashokkumar K, Kumar K S & Ravikesavan R (2014). An update on conventional and molecular breeding approaches for improving fiber quality traits in cotton-A review. African Journal of Biotechnology 13(10): 1097-1108
  • Ashraf M & Harris P J C (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3-16
  • Bartels D & Sunkar R (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Science 24: 23-58
  • Bates L, Waldren R & Teare I (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205-207
  • Chaves M, Flexas J & Pinheiro C (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103: 551- 560 de Montaigu A, Tóth R & Coupland G (2010). Plant development goes like clockwork. Trends in Genetics 26: 296-306 de Ronde J, Laurie R, Caetano T, Greyling M & Kerepesi I (2004). Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica 138: 123-132
  • Efeoglu B & Terzioglu S (2009). Photosynthetic responses of two wheat varieties to high temperature. EurAsian Journal of BioSciences 3: 97-106
  • Flexas J & Medrano H (2002). Drought-inhibition of photosynthesis in C3 plants: Stomatal and non- stomatal limitations revisited. Annals of Botany 89: 183-189
  • Gallé A, Haldimann P & Feller U (2007). Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytologist 174: 799-810
  • Gunes A, Pilbeam D & Inal A (2008). Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms, and lipid peroxidation. Communications in Soil Science and Plant Analysis 39: 1885-1903
  • Hadiarto T & Tran L-S P (2011). Progress studies of drought-responsive genes in rice. Plant Cell Reports 30: 297-310
  • Jahangir M, Abdel-Farid I B, Kim H K, Choi Y H & Verpoorte R (2009). Healthy and unhealthy plants: The effect of stress on the metabolism of Brassicaceae. Environmental and Experimental Botany 67: 23-33
  • Kosmas S, Argyrokastritis A, Loukas M, Eliopoulos E, Tsakas S & Kaltsikes P (2006). Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223: 329-339
  • Liu D, Guo X, Lin Z, Nie Y & Zhang X (2006). Genetic diversity of Asian cotton (Gossypium arboreum L.) in China evaluated by microsatellite analysis. Genetic Resource and Crop Evolution 53: 1145-1152
  • Liu L, Hu X, Song J, Zong X, Li D & Li D (2009). Over- expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought. Journal of Plant Physiology 166: 531-542
  • Mao X, Zhang H, Tian S, Chang X & Jing R (2010). TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. Shamim Z, Rashid B, Rahman S & Husnain T (2013). Journal of Experimental Botany 61: 683-696
  • Maqbool A, Zahur M, Irfan M, Qaiser U, Rashid B & Husnain T (2007). Identification, characterization and expression of drought related alpha-crystalline heat shock protein gene (GHSP26) from desi cotton. Crop Science 47: 2437-2444
  • Maqbool A, Abbas W, Rao A, Irfan M, Zahur M, Bakhsh A, Riazuddin S & Husnain T (2010). Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum. Biotechnology Progress 26: 21- 25
  • Mohamed B B, Sarwar M B, Hassan S, Rashid B, Aftab B & Husnain T (2015). Tolerance of roselle (Hibiscus sabdariffa L.) genotypes to drought stress at vegetative stage. Advancements in Life Sciences 2(2): 74-82
  • Muoki R, Paul A, Kumari A, Singh K & Kumar S (2012). An improved protocol for the isolation of RNA from roots of tea (Camellia sinensis (L.) O. Kuntze). Molecular Biotechnology 52: 82-88
  • Pruneda-Paz J L & Kay S A (2010). An expanding universe of circadian networks in higher plants. Trends in Plant Science 15: 259-265
  • Quan R, Shang M, Zhang H, Zhao Y & Zhang J (2004). Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Science 166: 141-149
  • Rashid B, Husnain T & Riazuddin S (2014). Genomic approaches and abiotic stress tolerance in plants. In: P Ahmad & S Rasool S (Eds), Emerging technologies and management of crop stress tolerance. Vol 1-Biological techniques, Elsevier, Academic press, USA, pp. 1-38
  • Sarwar M B, Batool F, Rashid B, Aftab B, Hassan S & Husnain T (2014). Integration and expression of heat shock protein gene in segregating population of transgenic cotton plant for drought tolerance. Pakistan Journal of Agricultural Sciences 51: 935- 941 Expression of drought tolerance in transgenic cotton. ScienceAsia 39: 1-11
  • Stepien P & Johnson G N (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiology 149: 1154-1165
  • Ünlükara A, Kurunç A & Cemek B (2015). Green long pepper growth under different saline and water regime conditions and usability of water consumption in plant salt tolerance. Tarim Bilimleri Dergisi-Journal of Agricultural Sciences 21: 167-176
  • Verslues P E & Bray E A (2006). Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. Journal of Experimental Botany 57: 201-212
  • Waters E R, Aevermann B D & Sanders-Reed Z (2008). Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperon 13: 127-142
  • Xu Y H, Liu R, Yan L, Liu Z Q, Jiang S C, Shen Y Y, Wang X F & Zhang D P (2012). Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. Journal of Experimental Botany 63: 1095-1106
  • Yue Y, Zhang M, Zhang J, Duan L & Li Z (2011). Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) results in enhanced drought tolerance. Plant Science 181: 405- 411
  • Yue Y, Zhang M, Zhang J, Tian X, Duan L & Li Z (2012). Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. Journal of Experimental Botany 63: 3741-3748
  • Zhang H B, Li Y, Wang B & Chee P W (2008). Recent advances in cotton genomics. International Journal of Plant Genomics doi: 10.1155/2008/742304

Transgenik Pamuk Bitkisinin Kuraklık Stresine Fizyo-Biyokimyasal ve Moleküler Tepkisi

Year 2017, Volume: 23 Issue: 2, 157 - 166, 01.03.2017

Abstract

Kuraklık, pamuk bitkisinin gelişimini ve verimini azaltmaktadır. Su stresi koşullarında biyokimyasal ve fizyolojik prosesleri moleküler düzeyde korumak için bitkide ısı şok proteinleri birikmektedir. Bu çalışmada, küçük ısı şok proteinleri GHSP26 içeren transgenik pamuk bitkisinin T2 neslinin farklı kuraklık stresi altında biyokimyasal, fizyolojik ve moleküler düzeyde tepkileri yabani-tip bitki ile karşılaştırılmıştır. Transgenik bitkiler yabani-tip bitkilere gore % 30 daha fazla prolin biriktirmişlerdir. Kuraklık tolerasyon etkinliğinin arttığını gösteren lipid peroksidasyon aktivitesi transgenik bitkilerde azalmıştır. Kuraklığın onuncu gününde, transgenik ve yabani-tip bitkilerde oransal yaprak su içeriği sırasıyla % 69 ve % 45 olmuştur. Benzer şekilde yabani-tip bitkilerle karşılaştırıldığında, transgenik bitkiler fotosentez, stoma iletkenliği, transpirasyon ve ozmotik potansiyel açısından daha iyi performance göstermiştir. GHSP26 ve Gh-POD, Gh-RuBisCO, Gh-LHCP PSII, Gh-PIP, Gh-TPS ve Gh-LEA gibi kimi kuraklığa tepki genlerinin gerçek zaman PCR sonuçları yüksek düzeyde gen ekspresyonu olduğunu ve transgenik bitkilerin kuraklık toleranslarının iyi olduğunu göstermiştir. Transgenik bitkilerde GHSP26’nın yüksek ekspresyonu prolin ve lipid peroksidasyonu gibi biyokimyasal, fotosentez, ozmotik potansiyel ve su durumuna bağlı fizyolojik özellikleri iyileştirmiştir. Bu yüzden, bu çalışma bitkilerde kuraklık toleransını artırmak üzere ıslah ve homozigot hatların seçiminde kullanılabilecektir

References

  • Akram M, Ashraf M, Jamil M, Iqbal R, Nafees M & Khan M (2011). Nitrogen application improves gas exchange characteristics and chlorophyll fluorescence in maize hybrids under salinity conditions. Russian Journal of Plant Physiology 58: 394-401
  • Al-Whaibi M (2011). Plant heat-shock proteins: A mini review. Journal of King Saud University Science 23: 139-150
  • Ashokkumar K, Kumar K S & Ravikesavan R (2014). An update on conventional and molecular breeding approaches for improving fiber quality traits in cotton-A review. African Journal of Biotechnology 13(10): 1097-1108
  • Ashraf M & Harris P J C (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3-16
  • Bartels D & Sunkar R (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Science 24: 23-58
  • Bates L, Waldren R & Teare I (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205-207
  • Chaves M, Flexas J & Pinheiro C (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103: 551- 560 de Montaigu A, Tóth R & Coupland G (2010). Plant development goes like clockwork. Trends in Genetics 26: 296-306 de Ronde J, Laurie R, Caetano T, Greyling M & Kerepesi I (2004). Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica 138: 123-132
  • Efeoglu B & Terzioglu S (2009). Photosynthetic responses of two wheat varieties to high temperature. EurAsian Journal of BioSciences 3: 97-106
  • Flexas J & Medrano H (2002). Drought-inhibition of photosynthesis in C3 plants: Stomatal and non- stomatal limitations revisited. Annals of Botany 89: 183-189
  • Gallé A, Haldimann P & Feller U (2007). Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytologist 174: 799-810
  • Gunes A, Pilbeam D & Inal A (2008). Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms, and lipid peroxidation. Communications in Soil Science and Plant Analysis 39: 1885-1903
  • Hadiarto T & Tran L-S P (2011). Progress studies of drought-responsive genes in rice. Plant Cell Reports 30: 297-310
  • Jahangir M, Abdel-Farid I B, Kim H K, Choi Y H & Verpoorte R (2009). Healthy and unhealthy plants: The effect of stress on the metabolism of Brassicaceae. Environmental and Experimental Botany 67: 23-33
  • Kosmas S, Argyrokastritis A, Loukas M, Eliopoulos E, Tsakas S & Kaltsikes P (2006). Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223: 329-339
  • Liu D, Guo X, Lin Z, Nie Y & Zhang X (2006). Genetic diversity of Asian cotton (Gossypium arboreum L.) in China evaluated by microsatellite analysis. Genetic Resource and Crop Evolution 53: 1145-1152
  • Liu L, Hu X, Song J, Zong X, Li D & Li D (2009). Over- expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought. Journal of Plant Physiology 166: 531-542
  • Mao X, Zhang H, Tian S, Chang X & Jing R (2010). TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. Shamim Z, Rashid B, Rahman S & Husnain T (2013). Journal of Experimental Botany 61: 683-696
  • Maqbool A, Zahur M, Irfan M, Qaiser U, Rashid B & Husnain T (2007). Identification, characterization and expression of drought related alpha-crystalline heat shock protein gene (GHSP26) from desi cotton. Crop Science 47: 2437-2444
  • Maqbool A, Abbas W, Rao A, Irfan M, Zahur M, Bakhsh A, Riazuddin S & Husnain T (2010). Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum. Biotechnology Progress 26: 21- 25
  • Mohamed B B, Sarwar M B, Hassan S, Rashid B, Aftab B & Husnain T (2015). Tolerance of roselle (Hibiscus sabdariffa L.) genotypes to drought stress at vegetative stage. Advancements in Life Sciences 2(2): 74-82
  • Muoki R, Paul A, Kumari A, Singh K & Kumar S (2012). An improved protocol for the isolation of RNA from roots of tea (Camellia sinensis (L.) O. Kuntze). Molecular Biotechnology 52: 82-88
  • Pruneda-Paz J L & Kay S A (2010). An expanding universe of circadian networks in higher plants. Trends in Plant Science 15: 259-265
  • Quan R, Shang M, Zhang H, Zhao Y & Zhang J (2004). Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Science 166: 141-149
  • Rashid B, Husnain T & Riazuddin S (2014). Genomic approaches and abiotic stress tolerance in plants. In: P Ahmad & S Rasool S (Eds), Emerging technologies and management of crop stress tolerance. Vol 1-Biological techniques, Elsevier, Academic press, USA, pp. 1-38
  • Sarwar M B, Batool F, Rashid B, Aftab B, Hassan S & Husnain T (2014). Integration and expression of heat shock protein gene in segregating population of transgenic cotton plant for drought tolerance. Pakistan Journal of Agricultural Sciences 51: 935- 941 Expression of drought tolerance in transgenic cotton. ScienceAsia 39: 1-11
  • Stepien P & Johnson G N (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiology 149: 1154-1165
  • Ünlükara A, Kurunç A & Cemek B (2015). Green long pepper growth under different saline and water regime conditions and usability of water consumption in plant salt tolerance. Tarim Bilimleri Dergisi-Journal of Agricultural Sciences 21: 167-176
  • Verslues P E & Bray E A (2006). Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. Journal of Experimental Botany 57: 201-212
  • Waters E R, Aevermann B D & Sanders-Reed Z (2008). Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperon 13: 127-142
  • Xu Y H, Liu R, Yan L, Liu Z Q, Jiang S C, Shen Y Y, Wang X F & Zhang D P (2012). Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. Journal of Experimental Botany 63: 1095-1106
  • Yue Y, Zhang M, Zhang J, Duan L & Li Z (2011). Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) results in enhanced drought tolerance. Plant Science 181: 405- 411
  • Yue Y, Zhang M, Zhang J, Tian X, Duan L & Li Z (2012). Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. Journal of Experimental Botany 63: 3741-3748
  • Zhang H B, Li Y, Wang B & Chee P W (2008). Recent advances in cotton genomics. International Journal of Plant Genomics doi: 10.1155/2008/742304
There are 33 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Muhammad Bilal Sarwar This is me

Sajjad Sadıque This is me

Sameera Hassan This is me

Sania Rıaz This is me

Bushra Rashıd This is me

Bahaeldeen Babiker Mohamed This is me

Tayyab Husnaın This is me

Publication Date March 1, 2017
Published in Issue Year 2017 Volume: 23 Issue: 2

Cite

APA Sarwar, M. B., Sadıque, S., Hassan, S., Rıaz, S., et al. (2017). Physio-Biochemical and Molecular Responses in Transgenic Cotton under Drought Stress. Journal of Agricultural Sciences, 23(2), 157-166.

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).