BibTex RIS Cite

The Effects of Water Temperature on Discharge and Uniformity Parameters of Emitters with Different Discharges, Types and Distances

Year 2017, Volume: 23 Issue: 2, 223 - 233, 01.03.2017

Abstract

The research was conducted on emitter testing bench established in Irrigation laboratory, Suleyman Demirel University, Isparta, Turkey. In the study, discharge equations q= kHx , standard temperature discharge index TDI, standard temperature is 20 oC and uniformity parameters such as coefficient of manufacturing variation CV , standard uniformity Us , Christiansen uniformity Cu and emission uniformity CUE of in-line emitters with different discharges D1: 2.4 L h-1 and D2: 4.0 L h-1 , types TB: Pressure compensating, TT: Non-pressure compensating and distances A1: 20 cm, A2: 33 cm and A3: 50 cm under different water temperatures 20, 30, 40 and 50 oC were determined. Effects of different pressures from 80 to 200 kPa on discharge of the emitters were also investigated. Discharges of non-pressure compensating emitters were increased by increasing pressure r≈ 0.99 . Although discharge was stable under high or recommended pressure in pressure compensating emitters, there was an increasing trend in emitter discharge under low pressure like non-pressure compensating emitters. Linear regressions were obtained between discharge and water temperature in non-pressure compensating and pressure compensating emitters r≈ 0.99 . Emitter discharge increased due to water temperature increase approximately 5 and 3% in non-pressure compensating and pressure compensating emitters, respectively. TDI values of non-pressure compensating emitters increased between 0.04 and 0.06 with increasing water temperature. In pressure compensating emitters, TDI values decreased 0.02 in D1A1TB emitter, did not change in D1A2TB emitter, and increased between 0.01 and 0.02 in other four emitters with increasing water temperature. Cv, Us, Cu and CUE values of the emitters under different water temperatures ranged between 0.023-0.044, 95.6-97.7%, 96.6-98.1% and 89.3-96.0%, respectively. Significant differences were obtained for each of these parameters in different water temperatures, emitter types and emitter distances. Generally, uniformity parameters improved in high water temperatures and the highest values of uniformity parameters were obtained from A2 emitter distance in the tested emitters P

References

  • Abu-Gharbieh W (1997). Pre and Post-Plant Soil Solarisation. FAO Plant Protection Paper, No. 147, Rome, pp. 15-34
  • ASABE (2003). ASABE standards engineering practices data. 43rd ed. Michigan, pp. 864
  • ASAE (2002). Standards EP405.1, Design and installation of micro irrigation systems. ASAE, St. Joseph, MI, pp. 903-907
  • Bralts V F & Edwards D M (1986). Field evaluation of drip irrigation Submain Units. Transactions of the ASAE 29(6): 1659-1664
  • Christiansen J E (1942). Hydraulic of springling systems for irrigation. Transactions of ASAE 107: 221-239
  • Clark G A, Lamm F R & Rogers D H (2005). Sensitivity of thin-walled drip tape emitter discharge to water temperature. Applied Engineering in Agriculture 21(5): 855-863
  • Dogan E & Kirnak H (2010). Water temperature and system pressure effect on drip lateral properties. Irrigation Science 28: 407-419
  • Dutta D P (2008). Characterization of drip emitters and computing distribution uniformity in a drip irrigation system at low pressure under uniform land slopes. Texas A & M University, Texas
  • Nakayama F S & Bucks D A (1985). Temperature effects on calcium carbonate precipitate clogging of trickle emitters. In: Procceeding of the 3rd International Drip/Trickle Irrigation Congress. 18-21 November, Michigan, pp. 45-49
  • Ozekici B & Sneed R E (1995). Manufacturing variation for various trickle irrigation on-line emitters. Applied Engineering in Agriculture 11(2): 235-240
  • Parchomchuk P (1976). Water temperature effects on emitter discharge rates. Transactions of the ASAE 19(4): 690-692
  • Peng G F, Wu I P & Phene C J (1986). Temperature effects on drip line hydraulics. Transactions of the ASAE 29(1): 211-217
  • Perold R P (1977). Design of irrigation pipe laterals. Journal of the Irrigation Drainage Division, American Society of Civil Engineers 103: 179-195
  • Rodriguez-Sinobas L, Juana L & Losada A (1999). Effects of temperature changes on emitter discharge. Journal of Irrigation and Drainage Engineering 125: 64-73
  • Senyigit U, Cruz R L, Rodriguez-Sinobas L & Souza W J (2012). Changes on emitter discharge under different water temperature and pressure. Journal of Food, Agriculture and Environment 10(3-4): 718-720
  • Wu I P & Gitlin H M (1979). The manufacturer’s coefficient of variation of emitter flow for drip irrigation. No. 43. College of Tropical Agriculture and Human Resources University of Hawaii, Monoa
  • Yildirim O (2012). Overview to future in irrigation applications for Turkey. 2. National Irrigation and Agricultural Structures Symposium, 24-25 May, Izmir, pp. 3-10
  • Zur B & Tal S (1981). Emitter discharge sensitivity to pressure and temperature. Journal of Irrigation and Drainage Engineering 107(1): 1-9

Farklı Debi, Tip ve Aralıklara Sahip Damlatıcıların Debilerine ve Eş Su Dağılımlarına Su Sıcaklığının Etkisi

Year 2017, Volume: 23 Issue: 2, 223 - 233, 01.03.2017

Abstract

Bu araştırma Isparta Süleyman Demirel Üniversitesi Sulama laboratuarında kurulan damlatıcı test düzeneğinde yürütülmüştür. Çalışmada, farklı su sıcaklıkları 20, 30, 40 ve 50 o C altında, farklı damlatıcı debilerine D1 : 2.4 L h-1, D2 : 4.0 L h-1 , damlatıcı tiplerine TB: Basınç düzenleyicili, TT : Basınç düzenleyicisiz ve damlatıcı aralıklarına A1 : 20 cm, A2 : 33 cm, A3 : 50 cm sahip 12 farklı içten geçik damlatıcının debi eşitlikleri q= kHx , standart sıcaklık debi indeksleri TDI, standart sıcaklık 20 o C olarak alınmıştır ve yapım faklılığı katsayısı Cv , standart eş su dağılımı Us , Christiansen eş su dağılım katsayısı Cu ve damlatıcı eş su dağılımı CUE gibi eş su dağılım parametreleri belirlenmiştir. Ayrıca, farklı işletme basınçlarının 80-200 kPa damlatıcı debilerine olan etkileri incelenmiştir. Basınç düzenleyicisiz damlatıcı debileri artan işletme basıncı ile artmıştır r≈ 0.99 . Basınç düzenleyicili damlatıcı debileri ise yüksek veya önerilen basınçlarda sabit kalırken, düşük basınçlarda basınç düzenleyicisizlerde olduğu gibi artış göstermiştir. Hem basınç düzenleyicisiz hem de basınç düzenleyicili damlatıcılarda debi ve su sıcaklığı arasında doğrusal ilişki elde edilmiştir r≈ 0.99 . Su sıcaklığının artmasıyla debilerdeki artış basınç düzenleyicisiz damlatıcılarda yaklaşık % 5, basınç düzenleyicili damlatıcılarda ise yaklaşık % 3 olarak belirlenmiştir. Basınç düzenleyicisiz damlatıcıların TDI değerleri sıcaklık artışıyla 0.04 ile 0.06 arasında artmıştır. Basınç düzenleyicili damlatıcılarda ise TDI değerleri sıcaklık artışıyla, D1 A1 TB’de 0.02 azalmış, D1 A2 TB’de değişmemiş, ancak diğer dört damlatıcıda 0.01 ile 0.02 arasında artış göstermiştir. Farklı sıcaklıklar altında elde edilen Cv, Us, Cu ve CUE değerleri sırasıyla 0.023-0.044, % 95.6-97.7, % 96.6-98.1 ve % 89.3-96.0 arasında değişmiştir. Bu parametrelerin farklı su sıcaklıkları, damlatıcı tipleri ve damlatıcı aralıkları arasında istatistiksel olarak önemli farklar bulunmuştur. Test edilen damlatıcılarda genel olarak, eş su dağılım parametreleri yüksek su sıcaklıklarında yükselirken, en yüksek değerler A2 damlatıcı aralığında elde edilmiştir P

References

  • Abu-Gharbieh W (1997). Pre and Post-Plant Soil Solarisation. FAO Plant Protection Paper, No. 147, Rome, pp. 15-34
  • ASABE (2003). ASABE standards engineering practices data. 43rd ed. Michigan, pp. 864
  • ASAE (2002). Standards EP405.1, Design and installation of micro irrigation systems. ASAE, St. Joseph, MI, pp. 903-907
  • Bralts V F & Edwards D M (1986). Field evaluation of drip irrigation Submain Units. Transactions of the ASAE 29(6): 1659-1664
  • Christiansen J E (1942). Hydraulic of springling systems for irrigation. Transactions of ASAE 107: 221-239
  • Clark G A, Lamm F R & Rogers D H (2005). Sensitivity of thin-walled drip tape emitter discharge to water temperature. Applied Engineering in Agriculture 21(5): 855-863
  • Dogan E & Kirnak H (2010). Water temperature and system pressure effect on drip lateral properties. Irrigation Science 28: 407-419
  • Dutta D P (2008). Characterization of drip emitters and computing distribution uniformity in a drip irrigation system at low pressure under uniform land slopes. Texas A & M University, Texas
  • Nakayama F S & Bucks D A (1985). Temperature effects on calcium carbonate precipitate clogging of trickle emitters. In: Procceeding of the 3rd International Drip/Trickle Irrigation Congress. 18-21 November, Michigan, pp. 45-49
  • Ozekici B & Sneed R E (1995). Manufacturing variation for various trickle irrigation on-line emitters. Applied Engineering in Agriculture 11(2): 235-240
  • Parchomchuk P (1976). Water temperature effects on emitter discharge rates. Transactions of the ASAE 19(4): 690-692
  • Peng G F, Wu I P & Phene C J (1986). Temperature effects on drip line hydraulics. Transactions of the ASAE 29(1): 211-217
  • Perold R P (1977). Design of irrigation pipe laterals. Journal of the Irrigation Drainage Division, American Society of Civil Engineers 103: 179-195
  • Rodriguez-Sinobas L, Juana L & Losada A (1999). Effects of temperature changes on emitter discharge. Journal of Irrigation and Drainage Engineering 125: 64-73
  • Senyigit U, Cruz R L, Rodriguez-Sinobas L & Souza W J (2012). Changes on emitter discharge under different water temperature and pressure. Journal of Food, Agriculture and Environment 10(3-4): 718-720
  • Wu I P & Gitlin H M (1979). The manufacturer’s coefficient of variation of emitter flow for drip irrigation. No. 43. College of Tropical Agriculture and Human Resources University of Hawaii, Monoa
  • Yildirim O (2012). Overview to future in irrigation applications for Turkey. 2. National Irrigation and Agricultural Structures Symposium, 24-25 May, Izmir, pp. 3-10
  • Zur B & Tal S (1981). Emitter discharge sensitivity to pressure and temperature. Journal of Irrigation and Drainage Engineering 107(1): 1-9
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Ulas Senyıgıt This is me

Muhammet Sabit Ilkhan This is me

Publication Date March 1, 2017
Published in Issue Year 2017 Volume: 23 Issue: 2

Cite

APA Senyıgıt, U., & Ilkhan, M. S. (2017). The Effects of Water Temperature on Discharge and Uniformity Parameters of Emitters with Different Discharges, Types and Distances. Journal of Agricultural Sciences, 23(2), 223-233.

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).