Research Article
BibTex RIS Cite

Yazlık Buğday Genotipleri ve Diallel Melez Populasyonlarının Farklı Gelişme Dönemlerinde Yüksek Sıcaklık Membran Kararlılığı

Year 2009, Volume: 15 Issue: 04, 293 - 300, 01.11.2009
https://doi.org/10.1501/Tarimbil_0000001103

Abstract

Yüksek sıcaklığa toleransta hücre zarlarının kararlılığı önemli bir fizyolojik seleksiyon kriteri olabilir. Yüksek sıcaklık membran kararlılığı, yüksek sıcaklığa maruz bırakılan yaprak dokusunun içerisinde bulunduğu sulu ortamdaki elektriksel iletkenliğin ölçümüyle belirlenmektedir. Bu araştırma, tarla koşullarında yetiştirilen 4 yazlık buğday anacı ve bunların altı Fdiallel melez döllerinde, iki farklı yöntemle MTS, yüksek sıcaklık membran kararlılığı ve RI, zarar indeksi hesaplanan membran kararlılığının farklı gelişme dönemlerindeki değişimlerini belirlemek amacıyla gerçekleştirilmiştir. Ölçümler, yaprak büyümesi erken vejetatif dönem , sapa kalkma ve erken süt olum evrelerinde gerçekleştirilmiştir. MTS ve RI ölçümleri üç farklı büyüme evresinde benzer eğilim göstermiştir. Bununla birlikte, büyüme evreleri genotiplerin MTS ve RI değerlerini önemli düzeyde etkilemiştir. Genotiplerin membran kararlılığı parametreleri büyüme evresi ilerledikçe azalmıştır. Tüm ölçümlerde özel uyum yeteneğinin genel uyum yeteneğine üstünlük sağlaması, memran kararlılığı özelliklerinin yönetiminde eklemeli olmayan gen etkilerinin etkin olduğunu göstermektedir. Erken süt olum evresinde bayrak yaprak membran kararlılığı, tane verimiyle önemli düzeyde ilişkili bulunmuştur. Anaçlardan Genç 99 ve 84ÇZT04 düşük verim, Chil’s ve Seri 82 yüksek verim potansiyeli göstermişlerdir. F2 döllerinde tane verimi, başak verimi ve tane ağırlığı anaçlardan yüksek bulunmuştur. Bu sonuçlar, membran kararlılığı ölçümleri yönünden genotiplerdeki mevcut çeşitliliğin sıcak stresli çevrelerde buğday ıslahında kullanılabileceğini göstermektedir

References

  • Al-Khatib K. and G.M. Paulsen. 1984. Mode of high temperature injury to wheat during grain development. Physiologia Plantarum 61:363-368.
  • Assad, M.T. and G.M. Paulsen. 2002. Genetic changes in resistance to environment stress by U.S. Great Plains wheat cultivars. Euphytica 128:87-96.
  • Aydogan Cifci, E. and K. Yagdi. 2007. Determination of some agronomic traits by diallel hybrid analysis in common wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi 13:354-364.
  • Blum, A. 1988. Plant breeding for stress environments. CRC Press, Inc., Boca Raton, Florida, pp. 223.
  • Blum, A. and A. Ebercon. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21: 43-47.
  • Chandrasekar, V., R.K. Sairam and G.C. Sritastava. 2000. Physiological and biochemical responses of hexaploid and tetraploid wheat to drought stress. Journal of Agronomy and Crop Science 185: 219-227.
  • Dhanda, S.S. and R. Munjal. 2006. Inheritance of cellular thermotolerance in bread wheat. Plant Breeding 125: 557- 564.
  • Dhindsa, R.S., P.P. Dhindsa and T.A. Thorpe. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32: 93-101.
  • Dias, A.S., M.G. Barreiro, P.S. Campos, J. C. Ramalho and F.C. thermotolerance under heat stress. Journal of Agronomy and 037X.2009.00398.x cellular membrane Science. DOI: 10.1111/j.1439
  • Efeoglu, B. and S. Terzioglu. 2007. Varying patterns of protein synthesis in bread wheat during heat shock. Acta Biologica Hungarica 58:93-104.
  • Fischer, R.A. 1983. Wheat. In: Smith WH, Banta SJ, ed. Potential productivity of field crops under different environments, IRRI, Los Banos, Philippines, pp. 129-154.
  • Fischer, R.A. 1985. Number of kernels in wheat crops and the influence of solar radiation and temperature. Journal of Agricultural Sciences 105: 447-461.
  • Fischer, R.A. and D.E. Byerlee. 1991. Trends of wheat production in the warmer areas: Major issues and economic consideration. In: Saunders DA, ed. Wheat for nontraditional warm areas, Mexico, D.F., CIMMYT, pp.3- 27.
  • Fokar, M., A. Blum and H.T. Nguyen. 1998. Heat tolerance in spring wheat. II. Grain filling. Euphytica 104:9–15.
  • Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Science. 9:463-493.
  • Ibrahim, AMH. and J.S. Quick. 2001. Genetic control of high temperature tolerance in wheat as measured by membrane thermal stability. Crop Science. 41:1405–1407.
  • Jenner, C.F. 1994. Starch synthesis in the kernel of wheat under high temperature conditions. Australian Journal of Plant Physiology 21: 791-806.
  • Keeling, P.I., P.J. Bacon and D.C. Holt. 1993. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta 191: 342-348.
  • Paulsen, G.M. 1994. High temperature responses of crop plants. In: Boote KJ, Bennett JM, Sinclair TR, Paulsen GM, ed. Physiology and Determination of Crop Yields, ASA, CSSA, SSSA, Madison, WI, pp. 364-389.
  • Reynolds, M.P., E. Acevedo, K.D. Sayre and R.A. Fischer. 1994b. Yield potential in modern wheat varieties:its association with a less competitive ideotype. Field Crops Research 37:149-160.
  • Reynolds, M.P., M. Balota, M.I.B. Delgado, I. Amani and R.A. Fischer. 1994a. Physiological and morphological traits associated with spring wheat yield under hot irrigated conditions. Australian Journal of Plant Physiology 21:717- 730.
  • Reynolds, M.P., S. Nagarajan, M.A. Razzaque and O.A.A. Ageeb. 2001. Heat tolerance. In: Reynolds, M.P., Ortiz- Monasterio, J.I., McNab, A. (eds). Application of physiology in wheat breeding. Mexico, D.F.: CIMMYT, pp.124-135.
  • Saadalla, M.M. J.F. Shanahan and J.S. Quick. (1990b). Heat tolerance in winter wheat: I. hardening and genetic effects on membrane thermostability. Crop Science 30:1243- 1247.
  • Saadalla, M.M.; J.S. Quick and J.F. Shanahan. 1990a. Heat tolerance in winter wheat: II. Membrane thermostability and field performance. Crop Science 30:1248-1251.
  • Sairam, R.K. and G.C. Srivastava. 2001. Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science 186:63-70.
  • SAS, 1998. Statistical Analysis Software. Version 6.12., SAS Institute, Cary, NC, USA.
  • Shanahan, J.F., I.B. Edwards, J.S. Quick and J.R. Fenwick. 1990. Membrane thermostability and heat tolerance of spring wheat. Crop Science 30:247-251.
  • Stone, P. 2001. The effects of heat stress on cereal yield and quality hexaploid wheat. Euphytica 126:275–282.
  • Stone, P. J. and M.E. Nicolas. 1994. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Australian Journal of Plant Physiology 21:887-900.
  • Mohammed, A-R. and L. Tarpley. 2009. Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity and yield of rice plants. Crop Science 49:313-322.
  • Zadoks, J. C., T. T. Chang and C. F. Konzak. 1974, A decimal code for growth stages of cereals. Weed Research 14: 415-421.
  • Zhang, Z. and S.K. Kang. 1997. A SAS program for griffings diallel analyses. Agronomy Journal 89:176-182.

Membrane Thermal Stability at Different Developmental Stages of Spring Wheat Genotypes and Their Diallel Cross Populations

Year 2009, Volume: 15 Issue: 04, 293 - 300, 01.11.2009
https://doi.org/10.1501/Tarimbil_0000001103

Abstract

Membrane thermal stability MTS can be a significant selection criterion for heat stress tolerance. MTS is determined by measuring of electirical conductivity of aquause phase in which leaf tissue exposure to high temperature. This research was conducted to investigate the membrane stability assay measured by two different methods, namely MTS and relative injury RI . The second objective of this experiment was to determine the effects of different growth stages of four spring wheat parents and their six half F2 diallel cross progenies grown in the field on membrane stability. Measurements were taken at different growth stages seedling, stem elongation and early milk . The MTS and RI assays gave similar results at the three different growth stages. However, growth stages significantly affected the MTS and RI values of genotypes. Membrane stability parameters of genotypes decreased during the later developmental stages. Specific combining ability effects were superior to general combining ability effect for all measurements, indicating that membrane thermal stability was mediated mainly by non-additive gene actions. Membrane stability of flag leaf at the early milk stage was significantly correlated with grain yield. The parent of Genç 99 and 84ÇZT04 had low yield potential, whereas Chil’s and Seri 82 had high yield potential. Grain yield, spike yield and kernel weight of F population were found higher than their parents. These results suggest that genetic variation among genotypes for membrane stability can be utilized in wheat breeding in heat-stressed environments

References

  • Al-Khatib K. and G.M. Paulsen. 1984. Mode of high temperature injury to wheat during grain development. Physiologia Plantarum 61:363-368.
  • Assad, M.T. and G.M. Paulsen. 2002. Genetic changes in resistance to environment stress by U.S. Great Plains wheat cultivars. Euphytica 128:87-96.
  • Aydogan Cifci, E. and K. Yagdi. 2007. Determination of some agronomic traits by diallel hybrid analysis in common wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi 13:354-364.
  • Blum, A. 1988. Plant breeding for stress environments. CRC Press, Inc., Boca Raton, Florida, pp. 223.
  • Blum, A. and A. Ebercon. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21: 43-47.
  • Chandrasekar, V., R.K. Sairam and G.C. Sritastava. 2000. Physiological and biochemical responses of hexaploid and tetraploid wheat to drought stress. Journal of Agronomy and Crop Science 185: 219-227.
  • Dhanda, S.S. and R. Munjal. 2006. Inheritance of cellular thermotolerance in bread wheat. Plant Breeding 125: 557- 564.
  • Dhindsa, R.S., P.P. Dhindsa and T.A. Thorpe. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32: 93-101.
  • Dias, A.S., M.G. Barreiro, P.S. Campos, J. C. Ramalho and F.C. thermotolerance under heat stress. Journal of Agronomy and 037X.2009.00398.x cellular membrane Science. DOI: 10.1111/j.1439
  • Efeoglu, B. and S. Terzioglu. 2007. Varying patterns of protein synthesis in bread wheat during heat shock. Acta Biologica Hungarica 58:93-104.
  • Fischer, R.A. 1983. Wheat. In: Smith WH, Banta SJ, ed. Potential productivity of field crops under different environments, IRRI, Los Banos, Philippines, pp. 129-154.
  • Fischer, R.A. 1985. Number of kernels in wheat crops and the influence of solar radiation and temperature. Journal of Agricultural Sciences 105: 447-461.
  • Fischer, R.A. and D.E. Byerlee. 1991. Trends of wheat production in the warmer areas: Major issues and economic consideration. In: Saunders DA, ed. Wheat for nontraditional warm areas, Mexico, D.F., CIMMYT, pp.3- 27.
  • Fokar, M., A. Blum and H.T. Nguyen. 1998. Heat tolerance in spring wheat. II. Grain filling. Euphytica 104:9–15.
  • Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Science. 9:463-493.
  • Ibrahim, AMH. and J.S. Quick. 2001. Genetic control of high temperature tolerance in wheat as measured by membrane thermal stability. Crop Science. 41:1405–1407.
  • Jenner, C.F. 1994. Starch synthesis in the kernel of wheat under high temperature conditions. Australian Journal of Plant Physiology 21: 791-806.
  • Keeling, P.I., P.J. Bacon and D.C. Holt. 1993. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta 191: 342-348.
  • Paulsen, G.M. 1994. High temperature responses of crop plants. In: Boote KJ, Bennett JM, Sinclair TR, Paulsen GM, ed. Physiology and Determination of Crop Yields, ASA, CSSA, SSSA, Madison, WI, pp. 364-389.
  • Reynolds, M.P., E. Acevedo, K.D. Sayre and R.A. Fischer. 1994b. Yield potential in modern wheat varieties:its association with a less competitive ideotype. Field Crops Research 37:149-160.
  • Reynolds, M.P., M. Balota, M.I.B. Delgado, I. Amani and R.A. Fischer. 1994a. Physiological and morphological traits associated with spring wheat yield under hot irrigated conditions. Australian Journal of Plant Physiology 21:717- 730.
  • Reynolds, M.P., S. Nagarajan, M.A. Razzaque and O.A.A. Ageeb. 2001. Heat tolerance. In: Reynolds, M.P., Ortiz- Monasterio, J.I., McNab, A. (eds). Application of physiology in wheat breeding. Mexico, D.F.: CIMMYT, pp.124-135.
  • Saadalla, M.M. J.F. Shanahan and J.S. Quick. (1990b). Heat tolerance in winter wheat: I. hardening and genetic effects on membrane thermostability. Crop Science 30:1243- 1247.
  • Saadalla, M.M.; J.S. Quick and J.F. Shanahan. 1990a. Heat tolerance in winter wheat: II. Membrane thermostability and field performance. Crop Science 30:1248-1251.
  • Sairam, R.K. and G.C. Srivastava. 2001. Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science 186:63-70.
  • SAS, 1998. Statistical Analysis Software. Version 6.12., SAS Institute, Cary, NC, USA.
  • Shanahan, J.F., I.B. Edwards, J.S. Quick and J.R. Fenwick. 1990. Membrane thermostability and heat tolerance of spring wheat. Crop Science 30:247-251.
  • Stone, P. 2001. The effects of heat stress on cereal yield and quality hexaploid wheat. Euphytica 126:275–282.
  • Stone, P. J. and M.E. Nicolas. 1994. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Australian Journal of Plant Physiology 21:887-900.
  • Mohammed, A-R. and L. Tarpley. 2009. Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity and yield of rice plants. Crop Science 49:313-322.
  • Zadoks, J. C., T. T. Chang and C. F. Konzak. 1974, A decimal code for growth stages of cereals. Weed Research 14: 415-421.
  • Zhang, Z. and S.K. Kang. 1997. A SAS program for griffings diallel analyses. Agronomy Journal 89:176-182.
There are 32 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Mehmet Yıldırım This is me

Müjde Koç This is me

Celalettin Barutçular This is me

Publication Date November 1, 2009
Submission Date November 6, 2009
Published in Issue Year 2009 Volume: 15 Issue: 04

Cite

APA Yıldırım, M., Koç, M., & Barutçular, C. (2009). Membrane Thermal Stability at Different Developmental Stages of Spring Wheat Genotypes and Their Diallel Cross Populations. Journal of Agricultural Sciences, 15(04), 293-300. https://doi.org/10.1501/Tarimbil_0000001103

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).