In this study, a mathematical model was developed to define heat and mass transfer processes by microclimatologic methods in the greenhouse crops. The crop structure was depicted by means of plant architectural parameters and distribution functions. The energy and mass balances were identified for a differential stratum of the plant stand. The model contained the processes such as the solar radiation fractions total, PAR and NIR , net radiation; water vapor and CO2 transfer for different levels of plant stand. The sensible heat flux from leaf surfaces was computed by using resistance concept according to an analogy between electrical current and heat flux, and this analogy was adapted to both water vapor and CO2 transfer. The model was simulated for a period of 24 hours using the crop stand inputs and variables. According to the simulation results, the penetration rates of total solar radiation for z=1 m and z=0 m was %49 and %32.3 respectively. The net radiation was computed as 10 and 289.4 W/m2 for simulation day. The daily integrations crop transpiration and soil evaporation were determined as 2.731 kg/m2 and 1.478 kg/m2 respectively. As a result of these integrations, the evapotranspirasyon was 4.209 kg/m2.day The validation of model was performed with regression analysis to determine correlations between simulation results and measurement data. As a consequence, the model developed can be employed as a tool determining the heat and mass transfer processes for greenhouse crops, and can be integrated with expert systems to provide a more effective climate management
Bu çalışmada, sera bitki örtüsü içindeki ısı ve kütle transferi işlemlerini mikroklimatolojik yöntemlerle tanımlayan matematiksel bir model geliştirilmiştir. Bitki yapısı bitki mimari parametreleri ve dağılım fonksiyonları ile gösterilmiştir. Bitki standının diferansiyel tabakaları için enerji ve kütle dengeleri kurulmuştur. Model bitki standının farklı derinliklerinde güneş radyasyonu fraksiyonları toplam, PAR, NIR , net radyasyon, su buharı ve CO2 taşınımı gibi işlemleri kapsamıştır. Yaprak yüzeylerinden olan ısı transferi elektriksel akım ve ısı akısı benzeşimine göre direnç kavramıyla hesaplanmıştır. Bu benzeşim su buharı ve CO2 taşınımına uyarlanmıştır. Model 24 saatlik bir zaman aralığı için stand parametreleri ve değişkenleri girilerek çalıştırılmıştır. Simülasyon sonuçlarına göre, toplam güneş radyasyonunun bitki standının z=1 m’de ve z=0m için girişim oranları sırasıyla % 49 ve %32.3’tür. Simülasyon gününde bitki standında oluşan net radyasyonun 10 ile 289.4 W/m2 aralığında değiştiği hesaplanmıştır. Bitki örtüsünden ve toprak yüzeyinden olan su buharı taşınımlarının günlük integrasyonları sırasıyla 2.731 kg/m2 ve 1.478 kg/m olup; evapotranspirasyon 4.209 kg/m2günolarak tespit edilmiştir. Simülasyon ve ölçüm bulguları arasındaki ilişkileri saptamak için modelin doğrulaması regresyon analizi yapılarak sağlanmıştır. Sonuç olarak, geliştirilen model bitki standındaki ısı ve kütle transfer işlemleri için etkili bir hesaplama aracı olarak kullanılabilir. Model daha etkin iklim yönetimi için uzman sistemlerle birleştirilebilir
Primary Language | Turkish |
---|---|
Journal Section | Research Article |
Authors | |
Publication Date | January 1, 2009 |
Published in Issue | Year 2009 Volume: 15 Issue: 01 |
Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).