Research Article
BibTex RIS Cite

Effects of Salicylic Acid on the Growth and Some Physiological Characters in Salt Stressed Wheat Triticum aestivum L.

Year 2007, Volume: 13 Issue: 02, 114 - 119, 01.05.2007
https://doi.org/10.1501/Tarimbil_0000000444

Abstract

This study was conducted to determine the effects of seed soaking in salicylic acid 10-2 mol/L, 10-4 mol/L, 10-6 mol/L and control on the growth and some physiological characters in wheat Triticum aestivum L. under salinity 8 ds m-1 and non salinity conditions. NaCl reduced the emergence percentage, the growth parameters shoot and root dry weight , K+/Na+ ratio, osmotic potential and photosynthetic pigments Chl a, b and carotenoids contents in wheat seedlings. The emergence percentage was not changed, in contrast, shoot and root dry weight of seedlings, K+/Na+ ratio, photosynthetic pigments Chl a, b and carotenoids contents and osmotic potential were increased by salicylic acid treatments under non salinity condition. Seed soaking in SA increased the emergence percentage, osmotic potential, shoot and root dry weight, K+/Na+ ratio, photosynthetic pigments Chl a, b and carotenoids contents in the salinity stressed wheat seedlings. These results were indicated that SA has positive effects on plant growth in salinity and non salinity conditions. But the effects of SA was higher on emergenge percentage, K+/Na+ ratio and osmotic potantial in salinity condition compared to non salinity condition was obtained in this study

References

  • Afzal, I., M. Shahzad, B.N. Ahmad and M.F. Ahmad. 2005. Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestıvum L.) .Caderno de Pesquisa Ser. Bio., Santa Cruz do Sul. 17: 95-109.
  • Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts.
  • Polyphenoloxidase in Beta vulgaris. Plant Physiology 24, 1–10.
  • Ashraf, M., K., Aasiya and A. Khanum. 1997. Relationship between ion accumulation and growth in two spring wheat lines differing in salt tolerance at different growth stages. J. Agronomy and Crop Science 178:39-51.
  • Basra, S.M.A., I. Afzal, R.A. Rashid and A. Hameed. 2005. Inducing salt tolerance in wheat by seed vigor enhancement techniques. International Journal Biotechnology and Biology 1:173-179.
  • Bray, J.R. 1963. Root production and the estimation of net productivity. Can. J. Bot. 41:65-72.
  • Chinnusamy, V. and J.K. Zhu. 2003. Topics in current genetics. In: H. Hirt, K. Shinozaki (Eds.): Plant stress responses to abiotic stres. Springer-Verlag Berlin Heidelberg: 4.
  • Claussen, M., Luthen, H., Blatt, M. and M. Bottger. 1997. Auxin induced growth and its linkage to potassium channels. Planta 201:227-234.
  • Darra, B.L., S.P. Seth, H. Sinhg and R.S. Mendiratta. 1973. Effect of hormone-directed presoaking on emergence and growth of osmotically stressed wheat (Triticum aestivum L.). Agronomy Journal 65: 292-295.
  • Dela-Rosa, I.M. and R.K. Maiti. 1995. Biochemical mechanism in glossy sorghum lines for resistance to salinity stress. J. Plant Physiol. 1469 and environmental stress in Phytochemical ecology: allelochemicals. In: Chou C.H. and G.R. Walter (eds), Mycotoxins and Insect Pheromones and Allelomones. Taiwan, Academia Sinica Monograph Series 9: 101–118.
  • Ding, C.K., C.Y. Wang, K.C. Gross and D.L. Smith. 2002. Jasmonate and salicylate induce expression of pathogenesis-related protein genes and increase resistance to chilling injury in tomato fruit. Planta 214: 895-901.
  • El-Tayeb, M. A. 2005. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation 45:215–224.
  • Güneş, A. , A. İnal, M. Alpaslan, N. Çiçek, E. Güneri, F. Eraslan, and T. Güzelordu. 2005. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.) Archives of Agronomy and Soil Science 51(6): 687 – 695.
  • Gutierrez–Coronado, M.A., C. Trejo-Lopez and A. Larque Saavedra. 1998. Effects of salicylic acid on growth of roots and shoots in soybean. Plant Physio. Biochem. 36: 653–665.
  • Hamada, A.M. and A.M.A. Al-Hakimi. 2001. Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rostlinna Vyroba 47 (10): 444-450.
  • Hoyos, M. E. and S.Q. Zhang. 2000. Calcium-independent activation of salicylic acid- indcued protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiology 122: 1355-1363.
  • Jin, S., C.C.S. Chen and A.L. Plant. 2000. Regulation by ABA of osmotic stress induced changes in protein synthesis in tomato roots. Plant Cell and Environment 23:51-60.
  • Jones, M.M.N. and C. Turner. 1978. Osmotic adjustment in leaves of Sorghum in response to water deficits. Plant Physiol. 61:122–126.
  • Kang, H.M. and M.E. Saltveit. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol. Plant 115: 571–576.
  • Khan, A.A. 1992. Preplant physiological seed conditioning. Horticultural Review 14:131-181.
  • Khan W., P. Balakrishnan and D.L. Smith. 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology 160 (5): 485-492.
  • Khodary, S.E.A. 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt- stressed maize plants. International Journal of Agriculture and Biology 6: 5-8.
  • Kirst, G.O. 1989. Salinity tolerance of eu-karyotic marine algae. Ann. Rev. Plant Physiol., Plant Mol. Biol. 40: 21- 53.
  • Pancheva, T.V., L.P. Popova and A.L. Uzunova. 1996. Effects of salicylic acid on growth and photosynthesis in barley plants. J. Plant Physiol. 149: 57-63.
  • Raskin, I., H. Skubatz, W. Tang and B.J.D. Mense. 1990. Salicylic acid levels in thermogenic and non- thermogenic plants. Annals of Botany 66: 376-373.
  • Richards, L.A. 1954. Origin and nature of saline and alkali soils. pp, 1-6. In: Diagnosis and improvement of saline and alkali soils. Agricultural Handbook No: 60, USDA, Washigton, D.C., USA.
  • Rhoades, J.D., A. Kandiah and A.M. Mashali. 1992. The use of saline waters for crop production. FAO Irrigation and Drainage Paper No.48, 133 pp, Rome.
  • Shakirova, F.M. and M.V. Bezrukova. 1997. Induction of wheat resistance against environmental salinization by salicylic acid. Biol. Bull. (Izv. Russ. Acad. Sci.) 24:109– 112.
  • Shakirova, F.M., A.R. Sakhabutdinova, M.V. Bezrukova, R.A. Fatkhutdinova and D.R. Fatkhutdinova. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164: 317–322.
  • Szepesi, A., J. Csiszar, S. Bajkan, K. Gemes, V. Horvath, L. Erdei, A.K. Deer, M. Simon and I. Tari. 2005. Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Proceedings of the 8th Hungarian Congress on Plant Physiology and the 6th Hungarian Conference on Photosynthesis 49(1- 2):123-125, Acta Biologica Szegediensis.
  • Türkyılmaz, B., L.Y. Aktaş and A. Güven. 2005. Salicylic acid induced some biochemical and physiological changes in Phaseolus vulgaris L. Science and Engineering Journal of Firat Univ. 17(2): 319-326.
  • Witham, F.H., D.R. .Blaydes and R.M. Devlin. 1971. Experiments in plant Physiology. Van Nostrand Reinhold, New York.1-11.
  • Zhou X.M., A.F. MacKenzie, C.A. Madramootoo and D.L. Smith. 1999. Effects of stem-injected plant growth regulator, with or without sucrose, on grain production, biomass and photosynthetic activity of field-grown corn plants. J. Agronomy and Crop Science 183: 103-110.

Salisilik Asitin Tuz Stresindeki Buğdayın Triticum aestivum L. Büyümesi ve Bazı Fizyolojik Özellikleri Üzerine Etkileri

Year 2007, Volume: 13 Issue: 02, 114 - 119, 01.05.2007
https://doi.org/10.1501/Tarimbil_0000000444

Abstract

Bu çalışma tohuma uygulanan salisilik asitin 10-2 mol/L, 10-4 mol/L, 10-6 mol/L ve kontrol tuzlu 8 ds m-1 ve tuzsuz koşullarda buğdayın büyümesi ve bazı fizyolojik özellikleri üzerine etkilerini belirlemek için yürütülmüştür. Tuz buğday fidelerinde çıkış oranı, büyüme değerleri toprak altı ve toprak üstü kuru ağırlıklar , K+/Na+ oranı, ozmotik potansiyel ve fotosentetik pigment Klo a, b and karotenoidler içeriklerini azaltmıştır. Tuzsuz şartlarda salisilik asit uygulamasının çıkış oranını değiştirmediği, aksine fidelerin toprak altı ve toprak üstü kuru ağırlıkları, K+/Na+ oranı, fotosentetik pigment içerikleri Klo a, b and karotenoidler ve ozmotik potansiyelini arttırmıştır. Tuz stresindeki fidelerde ise salisilik asit uygulaması ile çıkış oranı, ozmotik potansiyel, toprak altı ve toprak üstü kuru ağırlıkları, K+/Na+ oranı ve fotosentetik pigment Klo a, b and karotenoidler içerikleri artmıştır. Bu sonuçlar salisilik asitin tuzlu ve tuzsuz şartlarda bitki büyümesini olumlu yönde etkilediğini göstermektedir. Fakat tuzlu şartlarda salisilik asitin çıkış oranı, K+/Na+ oranı ve ozmotik potansiyele olan etkilerinin tuzsuz şartlardaki uygulamasına nazaran daha yüksek olduğu belirlenmiştir

References

  • Afzal, I., M. Shahzad, B.N. Ahmad and M.F. Ahmad. 2005. Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestıvum L.) .Caderno de Pesquisa Ser. Bio., Santa Cruz do Sul. 17: 95-109.
  • Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts.
  • Polyphenoloxidase in Beta vulgaris. Plant Physiology 24, 1–10.
  • Ashraf, M., K., Aasiya and A. Khanum. 1997. Relationship between ion accumulation and growth in two spring wheat lines differing in salt tolerance at different growth stages. J. Agronomy and Crop Science 178:39-51.
  • Basra, S.M.A., I. Afzal, R.A. Rashid and A. Hameed. 2005. Inducing salt tolerance in wheat by seed vigor enhancement techniques. International Journal Biotechnology and Biology 1:173-179.
  • Bray, J.R. 1963. Root production and the estimation of net productivity. Can. J. Bot. 41:65-72.
  • Chinnusamy, V. and J.K. Zhu. 2003. Topics in current genetics. In: H. Hirt, K. Shinozaki (Eds.): Plant stress responses to abiotic stres. Springer-Verlag Berlin Heidelberg: 4.
  • Claussen, M., Luthen, H., Blatt, M. and M. Bottger. 1997. Auxin induced growth and its linkage to potassium channels. Planta 201:227-234.
  • Darra, B.L., S.P. Seth, H. Sinhg and R.S. Mendiratta. 1973. Effect of hormone-directed presoaking on emergence and growth of osmotically stressed wheat (Triticum aestivum L.). Agronomy Journal 65: 292-295.
  • Dela-Rosa, I.M. and R.K. Maiti. 1995. Biochemical mechanism in glossy sorghum lines for resistance to salinity stress. J. Plant Physiol. 1469 and environmental stress in Phytochemical ecology: allelochemicals. In: Chou C.H. and G.R. Walter (eds), Mycotoxins and Insect Pheromones and Allelomones. Taiwan, Academia Sinica Monograph Series 9: 101–118.
  • Ding, C.K., C.Y. Wang, K.C. Gross and D.L. Smith. 2002. Jasmonate and salicylate induce expression of pathogenesis-related protein genes and increase resistance to chilling injury in tomato fruit. Planta 214: 895-901.
  • El-Tayeb, M. A. 2005. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation 45:215–224.
  • Güneş, A. , A. İnal, M. Alpaslan, N. Çiçek, E. Güneri, F. Eraslan, and T. Güzelordu. 2005. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.) Archives of Agronomy and Soil Science 51(6): 687 – 695.
  • Gutierrez–Coronado, M.A., C. Trejo-Lopez and A. Larque Saavedra. 1998. Effects of salicylic acid on growth of roots and shoots in soybean. Plant Physio. Biochem. 36: 653–665.
  • Hamada, A.M. and A.M.A. Al-Hakimi. 2001. Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rostlinna Vyroba 47 (10): 444-450.
  • Hoyos, M. E. and S.Q. Zhang. 2000. Calcium-independent activation of salicylic acid- indcued protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiology 122: 1355-1363.
  • Jin, S., C.C.S. Chen and A.L. Plant. 2000. Regulation by ABA of osmotic stress induced changes in protein synthesis in tomato roots. Plant Cell and Environment 23:51-60.
  • Jones, M.M.N. and C. Turner. 1978. Osmotic adjustment in leaves of Sorghum in response to water deficits. Plant Physiol. 61:122–126.
  • Kang, H.M. and M.E. Saltveit. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol. Plant 115: 571–576.
  • Khan, A.A. 1992. Preplant physiological seed conditioning. Horticultural Review 14:131-181.
  • Khan W., P. Balakrishnan and D.L. Smith. 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology 160 (5): 485-492.
  • Khodary, S.E.A. 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt- stressed maize plants. International Journal of Agriculture and Biology 6: 5-8.
  • Kirst, G.O. 1989. Salinity tolerance of eu-karyotic marine algae. Ann. Rev. Plant Physiol., Plant Mol. Biol. 40: 21- 53.
  • Pancheva, T.V., L.P. Popova and A.L. Uzunova. 1996. Effects of salicylic acid on growth and photosynthesis in barley plants. J. Plant Physiol. 149: 57-63.
  • Raskin, I., H. Skubatz, W. Tang and B.J.D. Mense. 1990. Salicylic acid levels in thermogenic and non- thermogenic plants. Annals of Botany 66: 376-373.
  • Richards, L.A. 1954. Origin and nature of saline and alkali soils. pp, 1-6. In: Diagnosis and improvement of saline and alkali soils. Agricultural Handbook No: 60, USDA, Washigton, D.C., USA.
  • Rhoades, J.D., A. Kandiah and A.M. Mashali. 1992. The use of saline waters for crop production. FAO Irrigation and Drainage Paper No.48, 133 pp, Rome.
  • Shakirova, F.M. and M.V. Bezrukova. 1997. Induction of wheat resistance against environmental salinization by salicylic acid. Biol. Bull. (Izv. Russ. Acad. Sci.) 24:109– 112.
  • Shakirova, F.M., A.R. Sakhabutdinova, M.V. Bezrukova, R.A. Fatkhutdinova and D.R. Fatkhutdinova. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164: 317–322.
  • Szepesi, A., J. Csiszar, S. Bajkan, K. Gemes, V. Horvath, L. Erdei, A.K. Deer, M. Simon and I. Tari. 2005. Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Proceedings of the 8th Hungarian Congress on Plant Physiology and the 6th Hungarian Conference on Photosynthesis 49(1- 2):123-125, Acta Biologica Szegediensis.
  • Türkyılmaz, B., L.Y. Aktaş and A. Güven. 2005. Salicylic acid induced some biochemical and physiological changes in Phaseolus vulgaris L. Science and Engineering Journal of Firat Univ. 17(2): 319-326.
  • Witham, F.H., D.R. .Blaydes and R.M. Devlin. 1971. Experiments in plant Physiology. Van Nostrand Reinhold, New York.1-11.
  • Zhou X.M., A.F. MacKenzie, C.A. Madramootoo and D.L. Smith. 1999. Effects of stem-injected plant growth regulator, with or without sucrose, on grain production, biomass and photosynthetic activity of field-grown corn plants. J. Agronomy and Crop Science 183: 103-110.
There are 33 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Diğdem Kaydan This is me

Mehmet Yağmur This is me

Neşe Okut This is me

Publication Date May 1, 2007
Submission Date January 1, 2007
Published in Issue Year 2007 Volume: 13 Issue: 02

Cite

APA Kaydan, D., Yağmur, M., & Okut, N. (2007). Salisilik Asitin Tuz Stresindeki Buğdayın Triticum aestivum L. Büyümesi ve Bazı Fizyolojik Özellikleri Üzerine Etkileri. Journal of Agricultural Sciences, 13(02), 114-119. https://doi.org/10.1501/Tarimbil_0000000444

Cited By















Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).