Research Article
BibTex RIS Cite

Mikrobiyal Fitazlar, Uygulama Alanları ve Biyoteknoloji

Year 2007, Volume: 13 Issue: 02, 147 - 155, 01.05.2007
https://doi.org/10.1501/Tarimbil_0000000438

Abstract

Fitazlar, myo-inositol hexakisphosphate phosphohydrolase, EC 3.1.3.8 fitatdan fosfatların serbest kalmasını katalizlerler. Birçok tahıl tanesi, baklagiller ve yağlı tohumlar fosforu fitat olarak depolarlar. Fitazlar; bitkiler, hayvanlar ve mikroorganizmalar tarafından üretilebilmektedir. Ancak mikrobiyal kaynaklı olanlar ticari kullanımlar ve biyoteknolojik uygulamalar için en ümit verici olanıdır. Bu enzim, fosfor beslenmesini artırmak ve hayvansal atıkların oluşturduğu fosfor kirliliğini azaltmak amaçları ile hayvan beslemede yaygın olarak kullanılmaktadır. Fitazlar aynı zamanda gıda sanayinde, myo-inositol fosfatların hazırlanmasında, kağıt endüstrisinde ve toprak iyileştirmede de kullanılmaktadır. Biyoteknoloji, iyileştirilmiş özelikleriyle yeni fitazların geliştirilmesinde kullanılmaktadır

References

  • Anonim, 2006. http://www.ansc.purdue.edu/courses/ansc443/Classnot es/Nutrition.html (02.08.2006).
  • Bedford, M.R., 2003. New enzyme Technologies for poultry feeds. Br. Poul. Sci., 44 (Suppl. 1): S14-S16.
  • Brocades, G. 1991. DNA sequence encoding phytase. Pat. EP 420 358.
  • Billington, D.C. 1993. The inositol phosphates. Chemical Synthesis and Biological Significance. Verlag Chemie, Weinheim.
  • Cheryan, M. 1980. Phytic acid interactions in food systems. Crit. Rev. Food Sci. Nutr., 13: 297-355.
  • Choi, Y.M., H.J. Suh, and J.M. Kim. 2001. Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J. Prot. Chem., 20: 287-292.
  • Cromwell, G.I., R.D. Coffey, G.R. Parker, H.J. Monegue and J.H. Randolph. 1995. Efficacy of a recombinant-derived phytase in improving the bioavailability of phosphorus in corn-soybean meal diets for pigs. Journal of Animal Sciences, 71: 1831-1840.
  • Dalal, R.C. 1978. Soil organic phosphorus. Adv. Agronom., 29: 83-117.
  • Day, P.R., 1996. Genetic modification of plants: significant issues and hurdles to success. Am. J. Clin. Nutr., 63:651S-656S.
  • Findenegg, G.R. and J.A. Nelemans. 1993. The effect of phytase on the availability of P from myo-inositol hexaphosphate (phytate) for maize roots. Plant Soil, 154: 189-196.
  • Forsberg, C.W., J.P. Phillips, S.P. Golovan, M.Z. Fan, R.G. Meidinger, A. Ajakaiye, D. Hilborn and R.R. Hacker. 2003. The Enviropig physiology, performance, and contribution to nutrient management advances in a regulated environment: The leading edge of change in the pork industry. J. Anim. Sci., 81(E. Suppl.2): E68- E77.
  • Fredrikson, M., P. Biot, M. Larsson Alminger, N.G. Carlsson and A.S. Sandberg. 2001. Production process for high- quality pea-protein isolate with low content of oligosaccharides and phytate. J. Agric. Food Chem., 49: 1208-1212.
  • Golovan, S.P., G. Wang, J. Zhang and C.W. Forsberg. 2000. Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that inhibits both phytase and acid phosphatase activities. Can. J. Microbiol., 46: 59-71.
  • Golovan, S.P., R.G. Meidinger, A. Ajakaiye, M. Cottrill, M.Z. Wiederkehr, D.J. Barney, C. Plante, J.W. Pollard, M.Z. Fan, M.A. Hayes, J. Laursen, J.P. Hjorth, R.R. Hacker, J.P. Phillips and C.W. Forsberg. 2001a. Pig expressing salivary phytase produce low-phosphorus manure. Nature Biotechnol., 19: 741-745.
  • Golovan, S.P., M.A. Hayes, J.P. Phillips and C.W. Forsberg. 2001b. Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nature Biotechnol., 19: 429-433.
  • Greiner, R., U. Konietzyn and K.D. Jany. 1993. Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys., 303: 107-113.
  • Greiner, R. and U. Konietzny. 1996. Construction of a bioreactor to produce special breakdown products of phytate. J. Biotechnol., 48: 153-159.
  • Greiner, R., M. Larsson Alminger, N.G. Carlsson, M. Muzquiz, C. Burbano, C. Cuadrado, M.M. Pedrosa and C. Goyoaga. 2002. Enzymatic phyate degradation-A possibility to design functional foods? Pol. J. Food Nutr. Sci., 21: 50-54.
  • Greiner, R. and U. Konietzyn. 2006. Phytase for food application. Food Thecnol. Biotechnol., 44(2): 125-140.
  • Han, O., M.L. Failla, A.D. Hill, E.R. Morris and J.C. Jr. Smith. 1994. Inositol phosphates inhibit uptake and transport of iron and zinc by a human intestinal cell line. J. Nutr., 124: 580-587.
  • Han, Y.M. and X.G. Lei. 1999. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch. Biochem. Biophys., 364: 83-90.
  • Haros, M., C.M. Rosell and C. Benedito. 2001. Fungal phytase as a potential breadmaking additive. Eur. Food Res. Technol., 213: 317-322.
  • Hayes, J.E., R.J. Simpson and A.E. Richardson. 2000. The growth and phosphorus utilization of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant and Soil, 220: 165-174.
  • Honke, J., H. Kozlowska, C. Vidal-Valverde, J. Frias, and R. Górecky. 1998. Changes in quantities of inositol phosphates during maturation and germination of legume seeds. Z. Lebensm. Unters. Forsch. A, 206: 279-283.
  • Hurrell, R.F. 2003. Influence of vegetable protein sources on trace element and mineral bioavailability. J. Nutr., 133(suppl.): 2973-2977.
  • Hübel, F. and E. Beck. 1996. Maize root phytase. Plant Physiol., 112: 1429-1436.
  • Idris, E.E., A. Farouk, R. Greiner, H. Bochow and R. Borris. 2002. Extracellular phytase activity of several Bacillus amyloliquefaciens FZB45 contributes to its plant- growth-promoting effects. Microbiol., 148: 2097-2109.
  • Iqbal, T.H., K.O. Lewis, and B.T. Cooper. 1994. Phytase activity in the human and rat small intestine. Gut, 35: 1233-1236.
  • IUPAC-IUB (Commission on Biochemical Nomenclature). 1977. Nomenclature of phosphorus containing compounds of biochemical importance. Eur. J. Biochem., 79: 1-9.
  • Kerovuo, J., M. Lauraeus, P. Nurminem, N. Kalkkinen and J. Apajalahti. 1998. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol., 64: 2079- 2085.
  • Kerovuo, J. 2000. A Novel Phytase from Bacillus. Characterization and Production of the Enzyme. Academic Dissertation, 68 p., Helsinki
  • Kim, Y., H.K. Kim, K.S. Bae, J.H. Yu and T.Oh. 1998. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb. Technol., 22: 2-7.
  • Kim, H.-W., Y.O. Kim, J.H. Lee, K.K. Kim and Y.J. Kim. 2003. Isolation and characterization of a phytase with improves properties from Citrobacter braakii. Biotechnol. Lett., 25: 1231-1234.
  • Konietzny, U. and R. Greiner. 2002. Molecular and catalytic properties of phytase-degrading enzymes (phytases). Int. J. Food Sci. Technol., 37: 791-812.
  • Konietzny, U. and R. Greiner. 2003. Phytic acid: Nutritional Impact. In: Encyclopedia of Food Science and Nutrition, B. Caballero, L. Trugo, P. Finglas (Eds.), Elsevier, London, UK, 4555-4563.
  • Konietzyn, U. and R. Greiner. 2004. Bacterial phytase: Potential application, in vivo function and regulation of its synthesis. Brazilian Journal of Microbiology, 35: 11- 18.
  • Kvist, S., J.M. Carlsson, J.M. Lawther and F.B. DeCastro. 2005. Process for the fractionation of cereal brans. US patent application US 20050089602.
  • Laumen, K. and O. Ghisalba. 1994. Preparative scale chemo enzymatic synthesis of optically pure D-myo-inositol 1- phosphate. Biosci. Biotech. Biochem., 58: 2046-2049.
  • Lei, X.G. and C.H. Stahl. 2001. Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl. Microbiol. Biotechnol., 57: 474-481.
  • Lei, X.G. and J.M. Porres. 2003. Phytase enzymology, applications, and biotechnology. Biotechnology Letters, 25: 1787-1794.
  • Li, M., M. Osaki, M. Honma and T. Tadano. 1997. Purification and characterization of phytase induced in tomato roots under phosphorus-deficient conditions. Soil Sci. Plant Nutr., 43: 179-190.
  • Liu, B.L., A. Rafiq, Y.M. Tzeng and A. Rob. 1998. The induction and characterization of phytase and beyond. Enzyme Microbiol. Technol., 22: 415-424.
  • Loewus, F. 2002. Biosynthesis of phytate in food grains and seeds. In: Food Phytases, N.R. Reddy, S.K. Sahte (Eds.), CRC Pres, Boca Raton, Florida, USA, 53-61.
  • Lopez, H.W., F. Leenhardt, C. Coudray and C. Rèmèsy. 2002. Minerals and phytic acid interactions: Is it a real problem for human nutrition? Int. J. Food Sci. Technol., 37: 727-739.
  • Lowe, J.T., H. Steenbock and C.H. Keiger. 1939. Cereals and rickets. IX. The availability of phytin-P to the chick. Poult. Sci., 18: 40-44.
  • Miksch, G., S. Kleist, K. Friesh and E. Flaschel. 2002. Overexpression of the phytase from E. coli and its extracellular production in bioreactors. Appl. Microbiol. And Biotech., p.253.
  • Mwachireya, S.A., R.M. Beames, D.A. Higgs and B.S. Dosanjh. 1999. Digestibility of canola protein products derived from the physical, enzymatic and chemical processing of commercial canola meal in rainbow trout Oncorhynchus mykiss (Walbaum) held in fresh water. Aquacul. Nutr., 5: 73-82.
  • Pandey, A., G. Szakacs, C.R. Soccol, J.A. Rodriguez-Leon and A.T. Soccol. 2001. Production, purification and properties of microbial phytases. Bioresource Technol., 7: 203-217.
  • Pasamontes, L., M. Haiker, M. Wyss, M. Tessier and A.P.G.M. vanLoon. 1997a. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Environmental Microbiology, 63(5): 1696-1700.
  • Pasamontes, L., M. Haiker, M. HenriquezHuecas, D.B. Mitchell and A.P.G.M. vanLoon. 1997b. Cloning of the phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochimica et Biophysica Acta-Gene Structure and Expression, 1353(3): 217-223.
  • Reddy, N.R., S.K., Sathe and D.K. Salunkhe, 1982. Phytases in legumes and cereals. Adv. Food Res., 28: 1-92.
  • Reddy, N.R., M.D. Pierson, S.K. Sahte and D.K. Salunkhe, 1989. Phytases in cereals and legumes. CRC Pres Inc., Boca Raton, FL.
  • Reddy, N.R. 2002. Occurence, distrubition, content, and dietary intake of phytate. In: Food Phytases, N.R. Reddy, S.K. Sahte (Eds.), CRC Pres, Boca Raton, Florida, USA, 25-51.
  • Richardson, A.E., P.A. Hadobas and J.E. Hayes. 2001a. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. The Plant J., 25: 641-649.
  • Richardson, A.E., P.A. Hadobas, J.E. Hayes, C.P. O’ Hara and R.J. Simpson. 2001b. Utilization of phosphorus by pasture plants supplied with myo-inositol hexakisphosphate is enhanced by the presence of soil microorganisms. Plant and Soil, 229: 47-56.
  • Rodriquez, E., J.M. Porres, Y. Han and X.G. Lei. 1999. Different sensivity of recombinant Aspergillus niger phytase (r-phyA) and Escherichia coli pH 2.5 acid phosphatase (r-AppA) to trypsin and pepsin in vitro. Arch. Biochem. Biophys., 365: 262-267.
  • Rodriguez, E., Z.A. Wood, P.A. Karplus and X.G. Lei. 2000a. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatese/phytase expressed in Pichia pastoris. Arch. Biochem. Biophys., 382: 105-112.
  • Rodriguez, E., E.J. Mullaney and X.G. Lei. 2000b. Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochemical and Biophysical Research Communications, 268(2): 373-378.
  • Robinson, E.H., S. Jackson and M.H. Li. 1996. Supplemental phytase in catfish diets. Aquacul. Mag., 22: 80-82.
  • Rumsey, G.L.. 1993. Fish meal and alternate sources of protein in fish feeds: Update. Fisheries, 18: 14-19.
  • Sandberg, A.S., M. Brune, N.G. Carlsson, L. Hallberg, E. Skoglund and L. Rossander-Hulthèn. 1999. Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am. J. Clin. Nutr., 70: 240-246.
  • Sandström, B. and A.S. Sandberg. 1992. Inhibitöry effects of isolated inositol phosphates on zinc absoption in humans. J. Trace Elem. Electrol. Health Dis., 6: 99-103.
  • Selle, P.H. and V. Ravindran. 2006. Microbial phytase in poultry nutrition. Animal feed Science and Technology (In Press).
  • Shears, S.B. 1998. The versatility of inositol phosphates as cellular signals. Biochim. Biophys. Acta, 1436: 49-67.
  • Simon, O. and F. Igbasan. 2002. In vitro properties of phytase from various microbial origins. Int. J. Food Sci. Thecnol., 37: 813-822.
  • Simons, P., H. Versteegh, A.W. Jongbloed, P.A. Kemme, P. Slump, K.D. Bos, M.G.E. Wolters, R.F. Beudeker and G.J. Verschoor. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. British Journal of Nutrition, 64: 525-540.
  • Siren, M. 1986a. Stabilized pharmaceutical and biological material composition. Pat.SE 003 165.
  • Siren, M. 1986b. New myo-inositol triphosphoric acid isomer. Pat. SW 052 950.
  • Siren, M. 1998. Use of an ester of inositoltriphosphate for the preparing of medicaments. U.S. Patent 5846957.
  • Van Hartingsveldt, W., C.M.J. Van Zeijl, M. Harteveld, R.J. Gouka, M.E.G. Suykerbuyk, R.G.M. Luiten, P.A. Van Paridon, G.C.M. Selten, A.E. Veenstra, R.F.M. Van Gorcom, and C.A.M.J.J. Van den Hondel. 1993. Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene, 127: 87-94.
  • Vohra, A. and T. Satyanarayana. 2003. Phytases: Microbial sources, production, prufication, and potential biotechnological applications. Critical Reviews in Biotecnology, 23(1): 29-60.
  • Wang, M., N.S. Hettiarachchy, M. Qi, W. Burks and T. Siebenmorgen. 1999. Preparation and functional properties of rice bran protein isolate. J. Agric. Food Chem., 47: 411-416.
  • Warden, W.K. and P.J. Schaible. 1962. Preliminary investigations concerning utilization of phytin phosphprus by the chick. Poult. Sci., 41 (Abstract).
  • Yanke, L.J., H.D. Bae, L.B. Selinger and K.J. Cheng. 1998. Phytase activity of anaerobic ruminal bacteria. Microbiol., 144: 1565-1573.

Microbial Phytases, Applications and Biotechnology

Year 2007, Volume: 13 Issue: 02, 147 - 155, 01.05.2007
https://doi.org/10.1501/Tarimbil_0000000438

Abstract

Phytases myo-inositol hexakisphosphate phosphohydrolase, EC 3.1.3.8 catalyze the release of phosphate from phytate. Several cereal grains, legumes and oilseeds store phoshorus as phytate. Phytases can be produced from plants, animals and microorganisms. Microbial sources, however, are most promising for commercial exploitations and biotechnological applications. The enzyme has been widely used in animal feeding to improve phosphorus nutrition and to reduce phosphorus pollution of animal waste. Phytases have been also used in food industry, preparation of myo-inositol phosphates, paper industry and as a soil amendment. Biotechnology are using for developing new effective phytases with improved properties

References

  • Anonim, 2006. http://www.ansc.purdue.edu/courses/ansc443/Classnot es/Nutrition.html (02.08.2006).
  • Bedford, M.R., 2003. New enzyme Technologies for poultry feeds. Br. Poul. Sci., 44 (Suppl. 1): S14-S16.
  • Brocades, G. 1991. DNA sequence encoding phytase. Pat. EP 420 358.
  • Billington, D.C. 1993. The inositol phosphates. Chemical Synthesis and Biological Significance. Verlag Chemie, Weinheim.
  • Cheryan, M. 1980. Phytic acid interactions in food systems. Crit. Rev. Food Sci. Nutr., 13: 297-355.
  • Choi, Y.M., H.J. Suh, and J.M. Kim. 2001. Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J. Prot. Chem., 20: 287-292.
  • Cromwell, G.I., R.D. Coffey, G.R. Parker, H.J. Monegue and J.H. Randolph. 1995. Efficacy of a recombinant-derived phytase in improving the bioavailability of phosphorus in corn-soybean meal diets for pigs. Journal of Animal Sciences, 71: 1831-1840.
  • Dalal, R.C. 1978. Soil organic phosphorus. Adv. Agronom., 29: 83-117.
  • Day, P.R., 1996. Genetic modification of plants: significant issues and hurdles to success. Am. J. Clin. Nutr., 63:651S-656S.
  • Findenegg, G.R. and J.A. Nelemans. 1993. The effect of phytase on the availability of P from myo-inositol hexaphosphate (phytate) for maize roots. Plant Soil, 154: 189-196.
  • Forsberg, C.W., J.P. Phillips, S.P. Golovan, M.Z. Fan, R.G. Meidinger, A. Ajakaiye, D. Hilborn and R.R. Hacker. 2003. The Enviropig physiology, performance, and contribution to nutrient management advances in a regulated environment: The leading edge of change in the pork industry. J. Anim. Sci., 81(E. Suppl.2): E68- E77.
  • Fredrikson, M., P. Biot, M. Larsson Alminger, N.G. Carlsson and A.S. Sandberg. 2001. Production process for high- quality pea-protein isolate with low content of oligosaccharides and phytate. J. Agric. Food Chem., 49: 1208-1212.
  • Golovan, S.P., G. Wang, J. Zhang and C.W. Forsberg. 2000. Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that inhibits both phytase and acid phosphatase activities. Can. J. Microbiol., 46: 59-71.
  • Golovan, S.P., R.G. Meidinger, A. Ajakaiye, M. Cottrill, M.Z. Wiederkehr, D.J. Barney, C. Plante, J.W. Pollard, M.Z. Fan, M.A. Hayes, J. Laursen, J.P. Hjorth, R.R. Hacker, J.P. Phillips and C.W. Forsberg. 2001a. Pig expressing salivary phytase produce low-phosphorus manure. Nature Biotechnol., 19: 741-745.
  • Golovan, S.P., M.A. Hayes, J.P. Phillips and C.W. Forsberg. 2001b. Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nature Biotechnol., 19: 429-433.
  • Greiner, R., U. Konietzyn and K.D. Jany. 1993. Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys., 303: 107-113.
  • Greiner, R. and U. Konietzny. 1996. Construction of a bioreactor to produce special breakdown products of phytate. J. Biotechnol., 48: 153-159.
  • Greiner, R., M. Larsson Alminger, N.G. Carlsson, M. Muzquiz, C. Burbano, C. Cuadrado, M.M. Pedrosa and C. Goyoaga. 2002. Enzymatic phyate degradation-A possibility to design functional foods? Pol. J. Food Nutr. Sci., 21: 50-54.
  • Greiner, R. and U. Konietzyn. 2006. Phytase for food application. Food Thecnol. Biotechnol., 44(2): 125-140.
  • Han, O., M.L. Failla, A.D. Hill, E.R. Morris and J.C. Jr. Smith. 1994. Inositol phosphates inhibit uptake and transport of iron and zinc by a human intestinal cell line. J. Nutr., 124: 580-587.
  • Han, Y.M. and X.G. Lei. 1999. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch. Biochem. Biophys., 364: 83-90.
  • Haros, M., C.M. Rosell and C. Benedito. 2001. Fungal phytase as a potential breadmaking additive. Eur. Food Res. Technol., 213: 317-322.
  • Hayes, J.E., R.J. Simpson and A.E. Richardson. 2000. The growth and phosphorus utilization of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant and Soil, 220: 165-174.
  • Honke, J., H. Kozlowska, C. Vidal-Valverde, J. Frias, and R. Górecky. 1998. Changes in quantities of inositol phosphates during maturation and germination of legume seeds. Z. Lebensm. Unters. Forsch. A, 206: 279-283.
  • Hurrell, R.F. 2003. Influence of vegetable protein sources on trace element and mineral bioavailability. J. Nutr., 133(suppl.): 2973-2977.
  • Hübel, F. and E. Beck. 1996. Maize root phytase. Plant Physiol., 112: 1429-1436.
  • Idris, E.E., A. Farouk, R. Greiner, H. Bochow and R. Borris. 2002. Extracellular phytase activity of several Bacillus amyloliquefaciens FZB45 contributes to its plant- growth-promoting effects. Microbiol., 148: 2097-2109.
  • Iqbal, T.H., K.O. Lewis, and B.T. Cooper. 1994. Phytase activity in the human and rat small intestine. Gut, 35: 1233-1236.
  • IUPAC-IUB (Commission on Biochemical Nomenclature). 1977. Nomenclature of phosphorus containing compounds of biochemical importance. Eur. J. Biochem., 79: 1-9.
  • Kerovuo, J., M. Lauraeus, P. Nurminem, N. Kalkkinen and J. Apajalahti. 1998. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol., 64: 2079- 2085.
  • Kerovuo, J. 2000. A Novel Phytase from Bacillus. Characterization and Production of the Enzyme. Academic Dissertation, 68 p., Helsinki
  • Kim, Y., H.K. Kim, K.S. Bae, J.H. Yu and T.Oh. 1998. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb. Technol., 22: 2-7.
  • Kim, H.-W., Y.O. Kim, J.H. Lee, K.K. Kim and Y.J. Kim. 2003. Isolation and characterization of a phytase with improves properties from Citrobacter braakii. Biotechnol. Lett., 25: 1231-1234.
  • Konietzny, U. and R. Greiner. 2002. Molecular and catalytic properties of phytase-degrading enzymes (phytases). Int. J. Food Sci. Technol., 37: 791-812.
  • Konietzny, U. and R. Greiner. 2003. Phytic acid: Nutritional Impact. In: Encyclopedia of Food Science and Nutrition, B. Caballero, L. Trugo, P. Finglas (Eds.), Elsevier, London, UK, 4555-4563.
  • Konietzyn, U. and R. Greiner. 2004. Bacterial phytase: Potential application, in vivo function and regulation of its synthesis. Brazilian Journal of Microbiology, 35: 11- 18.
  • Kvist, S., J.M. Carlsson, J.M. Lawther and F.B. DeCastro. 2005. Process for the fractionation of cereal brans. US patent application US 20050089602.
  • Laumen, K. and O. Ghisalba. 1994. Preparative scale chemo enzymatic synthesis of optically pure D-myo-inositol 1- phosphate. Biosci. Biotech. Biochem., 58: 2046-2049.
  • Lei, X.G. and C.H. Stahl. 2001. Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl. Microbiol. Biotechnol., 57: 474-481.
  • Lei, X.G. and J.M. Porres. 2003. Phytase enzymology, applications, and biotechnology. Biotechnology Letters, 25: 1787-1794.
  • Li, M., M. Osaki, M. Honma and T. Tadano. 1997. Purification and characterization of phytase induced in tomato roots under phosphorus-deficient conditions. Soil Sci. Plant Nutr., 43: 179-190.
  • Liu, B.L., A. Rafiq, Y.M. Tzeng and A. Rob. 1998. The induction and characterization of phytase and beyond. Enzyme Microbiol. Technol., 22: 415-424.
  • Loewus, F. 2002. Biosynthesis of phytate in food grains and seeds. In: Food Phytases, N.R. Reddy, S.K. Sahte (Eds.), CRC Pres, Boca Raton, Florida, USA, 53-61.
  • Lopez, H.W., F. Leenhardt, C. Coudray and C. Rèmèsy. 2002. Minerals and phytic acid interactions: Is it a real problem for human nutrition? Int. J. Food Sci. Technol., 37: 727-739.
  • Lowe, J.T., H. Steenbock and C.H. Keiger. 1939. Cereals and rickets. IX. The availability of phytin-P to the chick. Poult. Sci., 18: 40-44.
  • Miksch, G., S. Kleist, K. Friesh and E. Flaschel. 2002. Overexpression of the phytase from E. coli and its extracellular production in bioreactors. Appl. Microbiol. And Biotech., p.253.
  • Mwachireya, S.A., R.M. Beames, D.A. Higgs and B.S. Dosanjh. 1999. Digestibility of canola protein products derived from the physical, enzymatic and chemical processing of commercial canola meal in rainbow trout Oncorhynchus mykiss (Walbaum) held in fresh water. Aquacul. Nutr., 5: 73-82.
  • Pandey, A., G. Szakacs, C.R. Soccol, J.A. Rodriguez-Leon and A.T. Soccol. 2001. Production, purification and properties of microbial phytases. Bioresource Technol., 7: 203-217.
  • Pasamontes, L., M. Haiker, M. Wyss, M. Tessier and A.P.G.M. vanLoon. 1997a. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Environmental Microbiology, 63(5): 1696-1700.
  • Pasamontes, L., M. Haiker, M. HenriquezHuecas, D.B. Mitchell and A.P.G.M. vanLoon. 1997b. Cloning of the phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochimica et Biophysica Acta-Gene Structure and Expression, 1353(3): 217-223.
  • Reddy, N.R., S.K., Sathe and D.K. Salunkhe, 1982. Phytases in legumes and cereals. Adv. Food Res., 28: 1-92.
  • Reddy, N.R., M.D. Pierson, S.K. Sahte and D.K. Salunkhe, 1989. Phytases in cereals and legumes. CRC Pres Inc., Boca Raton, FL.
  • Reddy, N.R. 2002. Occurence, distrubition, content, and dietary intake of phytate. In: Food Phytases, N.R. Reddy, S.K. Sahte (Eds.), CRC Pres, Boca Raton, Florida, USA, 25-51.
  • Richardson, A.E., P.A. Hadobas and J.E. Hayes. 2001a. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. The Plant J., 25: 641-649.
  • Richardson, A.E., P.A. Hadobas, J.E. Hayes, C.P. O’ Hara and R.J. Simpson. 2001b. Utilization of phosphorus by pasture plants supplied with myo-inositol hexakisphosphate is enhanced by the presence of soil microorganisms. Plant and Soil, 229: 47-56.
  • Rodriquez, E., J.M. Porres, Y. Han and X.G. Lei. 1999. Different sensivity of recombinant Aspergillus niger phytase (r-phyA) and Escherichia coli pH 2.5 acid phosphatase (r-AppA) to trypsin and pepsin in vitro. Arch. Biochem. Biophys., 365: 262-267.
  • Rodriguez, E., Z.A. Wood, P.A. Karplus and X.G. Lei. 2000a. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatese/phytase expressed in Pichia pastoris. Arch. Biochem. Biophys., 382: 105-112.
  • Rodriguez, E., E.J. Mullaney and X.G. Lei. 2000b. Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochemical and Biophysical Research Communications, 268(2): 373-378.
  • Robinson, E.H., S. Jackson and M.H. Li. 1996. Supplemental phytase in catfish diets. Aquacul. Mag., 22: 80-82.
  • Rumsey, G.L.. 1993. Fish meal and alternate sources of protein in fish feeds: Update. Fisheries, 18: 14-19.
  • Sandberg, A.S., M. Brune, N.G. Carlsson, L. Hallberg, E. Skoglund and L. Rossander-Hulthèn. 1999. Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am. J. Clin. Nutr., 70: 240-246.
  • Sandström, B. and A.S. Sandberg. 1992. Inhibitöry effects of isolated inositol phosphates on zinc absoption in humans. J. Trace Elem. Electrol. Health Dis., 6: 99-103.
  • Selle, P.H. and V. Ravindran. 2006. Microbial phytase in poultry nutrition. Animal feed Science and Technology (In Press).
  • Shears, S.B. 1998. The versatility of inositol phosphates as cellular signals. Biochim. Biophys. Acta, 1436: 49-67.
  • Simon, O. and F. Igbasan. 2002. In vitro properties of phytase from various microbial origins. Int. J. Food Sci. Thecnol., 37: 813-822.
  • Simons, P., H. Versteegh, A.W. Jongbloed, P.A. Kemme, P. Slump, K.D. Bos, M.G.E. Wolters, R.F. Beudeker and G.J. Verschoor. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. British Journal of Nutrition, 64: 525-540.
  • Siren, M. 1986a. Stabilized pharmaceutical and biological material composition. Pat.SE 003 165.
  • Siren, M. 1986b. New myo-inositol triphosphoric acid isomer. Pat. SW 052 950.
  • Siren, M. 1998. Use of an ester of inositoltriphosphate for the preparing of medicaments. U.S. Patent 5846957.
  • Van Hartingsveldt, W., C.M.J. Van Zeijl, M. Harteveld, R.J. Gouka, M.E.G. Suykerbuyk, R.G.M. Luiten, P.A. Van Paridon, G.C.M. Selten, A.E. Veenstra, R.F.M. Van Gorcom, and C.A.M.J.J. Van den Hondel. 1993. Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene, 127: 87-94.
  • Vohra, A. and T. Satyanarayana. 2003. Phytases: Microbial sources, production, prufication, and potential biotechnological applications. Critical Reviews in Biotecnology, 23(1): 29-60.
  • Wang, M., N.S. Hettiarachchy, M. Qi, W. Burks and T. Siebenmorgen. 1999. Preparation and functional properties of rice bran protein isolate. J. Agric. Food Chem., 47: 411-416.
  • Warden, W.K. and P.J. Schaible. 1962. Preliminary investigations concerning utilization of phytin phosphprus by the chick. Poult. Sci., 41 (Abstract).
  • Yanke, L.J., H.D. Bae, L.B. Selinger and K.J. Cheng. 1998. Phytase activity of anaerobic ruminal bacteria. Microbiol., 144: 1565-1573.
There are 74 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Meltem Aşan This is me

Publication Date May 1, 2007
Submission Date January 1, 2007
Published in Issue Year 2007 Volume: 13 Issue: 02

Cite

APA Aşan, M. (2007). Mikrobiyal Fitazlar, Uygulama Alanları ve Biyoteknoloji. Journal of Agricultural Sciences, 13(02), 147-155. https://doi.org/10.1501/Tarimbil_0000000438

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).