Research Article
BibTex RIS Cite

Normal Olmayan Dağılımlı Populasyonlardan Alınan Örneklerde Hesaplanan Çeşitli Test İstatistiklerinin I. Tip Hata Olasılıkları Bakımından Karşılaştırılması

Year 2003, Volume: 09 Issue: 01, 23 - 28, 01.01.2003
https://doi.org/10.1501/Tarimbil_0000000339

Abstract

Bu çal ışmada, çeşitli varyanslara sahip Beta 4,14 ve Ki-Kare 5 da ğı l ı m ı gösteren populasyonlardan al ı nan 3 veya 4 gruplu örneklerden yararlan ı larak F, Marascuilo, Welch, Brown-Forsythe ve Alexander-Govern test istatistiklerinin 100 000 simülasyon denemesi sonunda gerçekle şen I. tip hata olas ı l ı klar ı bak ı m ı ndan karşı laşt ı nlmas ı yap ı lm ışt ı r. Simülasyon denemeleri sonunda, normal da ğı l ı m ön şart ı n ı n yerine gelmemesinin da ğı l ı m şeklinin , F testini etkilemedi ğ i, populasyon varyanslar ı homojenken veya aşı r ı heterojen değ ilken örnek genişlikleri dengeli olmak şart ı yla, F testinin güvenilir sonuçlar verdi ğ i görülmü ştür. Diğer alternatif testlerin, genel olarak da ğı l ı m şeklinden ve örnek genişlikleri ile bu örneklerin dengeli olup olmad ı klar ı ndan oldukça etkilendikleri sonucuna var ı lm ışt ı r.

References

  • Anonymous, 1994. FORTRAN Subroutines for Mathematical Applications. IMSL MATH/LIBRARY. Vol. 1-2. Visual Numerics, Inc., Houston, USA.
  • Brown, M. B. and A. B. Forsythe, 1974. the small sample behavior of some statistics which test the equality of several means. technometrics, 16, 129-132.
  • Cliff, N. 1997. Robustness and Power of D Statistics in Comparison to t For Paired Data. DAI-B 57/07, s. 4774.
  • Gorham, J. L. 1998. The Effects on Type I Error Rate and Power of Selected Competitors to the ANOVA F Test in Randomized Block Design Under Non-Normality and Variance Heterogeneity. DAI-B 58/12, s. 6650.
  • Hill, G. W. 1970. Algorithm 395. Student's t-Distribution. Communications of the ACM, 13, 617-619.
  • Krutchkoff, R. G. 1988. One-way fixed effects analysis of variance when the error variances may be unequal. J. of Statistical Computation and Simulation, 30, 259-271.
  • Levy, K. J. 1978b. some empirical power results associated with Welch's robust analysis of variance technique. J of Statistical Computation and Simulation, 8, 43-48.
  • Lix, L. M., J. C. Keselman, and H. J. Keselman, 1996. Consequences of assumption violations revisited: A quantitative review of alternatives to the one-way analysis of variance F test. Review of Educational Research, 66, 579-619.
  • Oshima, T. C. and J. Algina, 1992. Type I error rates for James's second-order test and Wilcox's H rntest under heteroscedasticity and non-normality. British Journal of Mathematical and Statistical Psychology, 45, 255-263.
  • Satterhwaite, F. E.,1941.Synthesis of variance. Psychometrika, 6, 309-316
  • Schne ı der, P. J. and D. A. Penfı eld, 1997. Alexander and Govern's Approximation: Providing an alternative to ANOVA under variance heterogeneity. The J. of Experimental Education, 65, 271-286.
  • Tabatabia, M. A. and W. Y. Tan, 1986. Some Monte Carlo studies on the comparison of several means under heteroscedasticity and robustness with respect to departure from normality. J. of Biometry, 7, 801-814.
  • Tomarken, A. J. and R. C. Serlin, 1986 Comparison of ANOVA alternatives under variance heterogeneity and specifı c noncentrality structures. Psychological Bulletin, 99, 90-99.
  • Ware, W. B. 1997. Detecting Departures From Normality: A Monte Carlo Simulation of a New Omnibus Test Based on Moments. DAI-A 58/04, s. 1196.
  • Welch, B. L. 1951. On the comparison of several mean values: An alternative approach. Biometrika, 38,330-336.
  • Wilcox, R. R. 1986. New Monte Carlo results on the robustness of the ANOVA F, W and F.statistics. J. of Statistical Computation and Simulation, 15, 933-943.
  • Wilcox, R. R. 1988. A new alternative to the ANOVA F test and new results on James's second-order method. J. of Mathematical and Statistical Psychology, 41, 109-117.
  • Wilcox, R. R. 1989. Adjusting for unequal variances when comparing means in one-way and two-way effects ANOVA models. J. of Educational Statistics, 14, 269-278.
  • Zar, J. H. 1999. Biostatistical Analysis. Fourth Edition. Simon & Schuster/A Viacom Co., New Jersey, USA.

Comparison of Some Test Statistics About Realized Type I Error Rate in the Non-Normal Populations

Year 2003, Volume: 09 Issue: 01, 23 - 28, 01.01.2003
https://doi.org/10.1501/Tarimbil_0000000339

Abstract

In this study, F, Marascuilo, Welch, Brown-Forsythe and Alexander-Govern tests were compared on realized type I error rates via three or four samples which are taken from Beta 4,14 and Chi-Square 5 populations by simulation technique. At the end of 100 000 simulation trials it was determined that the violation of normality assumption was not as important as homogeneity of variance for F test but it was important for the other tests. It was concluded that other alternative tests were highly affected by the distribution shape, sample size and being balanced or unbalanced of observations in samples.

References

  • Anonymous, 1994. FORTRAN Subroutines for Mathematical Applications. IMSL MATH/LIBRARY. Vol. 1-2. Visual Numerics, Inc., Houston, USA.
  • Brown, M. B. and A. B. Forsythe, 1974. the small sample behavior of some statistics which test the equality of several means. technometrics, 16, 129-132.
  • Cliff, N. 1997. Robustness and Power of D Statistics in Comparison to t For Paired Data. DAI-B 57/07, s. 4774.
  • Gorham, J. L. 1998. The Effects on Type I Error Rate and Power of Selected Competitors to the ANOVA F Test in Randomized Block Design Under Non-Normality and Variance Heterogeneity. DAI-B 58/12, s. 6650.
  • Hill, G. W. 1970. Algorithm 395. Student's t-Distribution. Communications of the ACM, 13, 617-619.
  • Krutchkoff, R. G. 1988. One-way fixed effects analysis of variance when the error variances may be unequal. J. of Statistical Computation and Simulation, 30, 259-271.
  • Levy, K. J. 1978b. some empirical power results associated with Welch's robust analysis of variance technique. J of Statistical Computation and Simulation, 8, 43-48.
  • Lix, L. M., J. C. Keselman, and H. J. Keselman, 1996. Consequences of assumption violations revisited: A quantitative review of alternatives to the one-way analysis of variance F test. Review of Educational Research, 66, 579-619.
  • Oshima, T. C. and J. Algina, 1992. Type I error rates for James's second-order test and Wilcox's H rntest under heteroscedasticity and non-normality. British Journal of Mathematical and Statistical Psychology, 45, 255-263.
  • Satterhwaite, F. E.,1941.Synthesis of variance. Psychometrika, 6, 309-316
  • Schne ı der, P. J. and D. A. Penfı eld, 1997. Alexander and Govern's Approximation: Providing an alternative to ANOVA under variance heterogeneity. The J. of Experimental Education, 65, 271-286.
  • Tabatabia, M. A. and W. Y. Tan, 1986. Some Monte Carlo studies on the comparison of several means under heteroscedasticity and robustness with respect to departure from normality. J. of Biometry, 7, 801-814.
  • Tomarken, A. J. and R. C. Serlin, 1986 Comparison of ANOVA alternatives under variance heterogeneity and specifı c noncentrality structures. Psychological Bulletin, 99, 90-99.
  • Ware, W. B. 1997. Detecting Departures From Normality: A Monte Carlo Simulation of a New Omnibus Test Based on Moments. DAI-A 58/04, s. 1196.
  • Welch, B. L. 1951. On the comparison of several mean values: An alternative approach. Biometrika, 38,330-336.
  • Wilcox, R. R. 1986. New Monte Carlo results on the robustness of the ANOVA F, W and F.statistics. J. of Statistical Computation and Simulation, 15, 933-943.
  • Wilcox, R. R. 1988. A new alternative to the ANOVA F test and new results on James's second-order method. J. of Mathematical and Statistical Psychology, 41, 109-117.
  • Wilcox, R. R. 1989. Adjusting for unequal variances when comparing means in one-way and two-way effects ANOVA models. J. of Educational Statistics, 14, 269-278.
  • Zar, J. H. 1999. Biostatistical Analysis. Fourth Edition. Simon & Schuster/A Viacom Co., New Jersey, USA.
There are 19 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Mehmet Mendeş This is me

Ensar Başpınar This is me

Publication Date January 1, 2003
Submission Date January 1, 2003
Published in Issue Year 2003 Volume: 09 Issue: 01

Cite

APA Mendeş, M., & Başpınar, E. (2003). Normal Olmayan Dağılımlı Populasyonlardan Alınan Örneklerde Hesaplanan Çeşitli Test İstatistiklerinin I. Tip Hata Olasılıkları Bakımından Karşılaştırılması. Journal of Agricultural Sciences, 09(01), 23-28. https://doi.org/10.1501/Tarimbil_0000000339
AMA Mendeş M, Başpınar E. Normal Olmayan Dağılımlı Populasyonlardan Alınan Örneklerde Hesaplanan Çeşitli Test İstatistiklerinin I. Tip Hata Olasılıkları Bakımından Karşılaştırılması. J Agr Sci-Tarim Bili. January 2003;09(01):23-28. doi:10.1501/Tarimbil_0000000339
Chicago Mendeş, Mehmet, and Ensar Başpınar. “Normal Olmayan Dağılımlı Populasyonlardan Alınan Örneklerde Hesaplanan Çeşitli Test İstatistiklerinin I. Tip Hata Olasılıkları Bakımından Karşılaştırılması”. Journal of Agricultural Sciences 09, no. 01 (January 2003): 23-28. https://doi.org/10.1501/Tarimbil_0000000339.
EndNote Mendeş M, Başpınar E (January 1, 2003) Normal Olmayan Dağılımlı Populasyonlardan Alınan Örneklerde Hesaplanan Çeşitli Test İstatistiklerinin I. Tip Hata Olasılıkları Bakımından Karşılaştırılması. Journal of Agricultural Sciences 09 01 23–28.
IEEE M. Mendeş and E. Başpınar, “Normal Olmayan Dağılımlı Populasyonlardan Alınan Örneklerde Hesaplanan Çeşitli Test İstatistiklerinin I. Tip Hata Olasılıkları Bakımından Karşılaştırılması”, J Agr Sci-Tarim Bili, vol. 09, no. 01, pp. 23–28, 2003, doi: 10.1501/Tarimbil_0000000339.
ISNAD Mendeş, Mehmet - Başpınar, Ensar. “Normal Olmayan Dağılımlı Populasyonlardan Alınan Örneklerde Hesaplanan Çeşitli Test İstatistiklerinin I. Tip Hata Olasılıkları Bakımından Karşılaştırılması”. Journal of Agricultural Sciences 09/01 (January 2003), 23-28. https://doi.org/10.1501/Tarimbil_0000000339.
JAMA Mendeş M, Başpınar E. Normal Olmayan Dağılımlı Populasyonlardan Alınan Örneklerde Hesaplanan Çeşitli Test İstatistiklerinin I. Tip Hata Olasılıkları Bakımından Karşılaştırılması. J Agr Sci-Tarim Bili. 2003;09:23–28.
MLA Mendeş, Mehmet and Ensar Başpınar. “Normal Olmayan Dağılımlı Populasyonlardan Alınan Örneklerde Hesaplanan Çeşitli Test İstatistiklerinin I. Tip Hata Olasılıkları Bakımından Karşılaştırılması”. Journal of Agricultural Sciences, vol. 09, no. 01, 2003, pp. 23-28, doi:10.1501/Tarimbil_0000000339.
Vancouver Mendeş M, Başpınar E. Normal Olmayan Dağılımlı Populasyonlardan Alınan Örneklerde Hesaplanan Çeşitli Test İstatistiklerinin I. Tip Hata Olasılıkları Bakımından Karşılaştırılması. J Agr Sci-Tarim Bili. 2003;09(01):23-8.

Journal of Agricultural Sciences is published as open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).