Research Article
BibTex RIS Cite
Year 2022, Volume: 28 Issue: 2, 342 - 350, 25.04.2022
https://doi.org/10.15832/ankutbd.824305

Abstract

References

  • Andreu J, Solera A, Paredes-Arquiola J, Haro-Monteagudo D & Van Lanen H (2015). Drought: research and science-policy interfacing. CRC Press, London, UK.
  • Aniruddha Bhalchandra P & Jyoti Kishen K (2013). Drinking Water Disinfection Techniques. CRC Press, Boca Raton, Florida, USA.
  • Bella P, Greco S, Polizzi G, Cirvilleri G & Catara V (2002). Soil fitness and thermal sensitivity of Pseudomonas corrugata strains. Ragusa-Sicily, Italy, pp. 831-836. http://doi.org/10.17660/ActaHortic.2003.614.122
  • Berney M, Weilenmann H, Ihssen J, Bassin C & Egli T (2006). Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Applied and environmental microbiology 72(4): 2586-2593. http://doi.org/10.1128/aem.72.4.2586-2593.2006
  • Bolton J R & Cotton C A (2008). The Ultraviolet Disinfection Handbook, First ed. American Water Works Association, Denver, USA.
  • Burch J D & Thomas K E (1998). An Overview of Water Disinfection in Developing Countries and the Potential for Solar Thermal Water Pasteurization. National Renewable Energy Laboratory, Golden, Colorado.
  • Caldwell M M, Bornman J F, Ballar C L, Flint S D & Kulandaivelu G (2007). Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical & Photobiological Sciences 6(3). http://doi.org/10.1039/b700019g
  • Casado C, Moreno-SanSegundo J, De la Obra I, Esteban García B, Sánchez Pérez J A & Marugán J (2021). Mechanistic modelling of wastewater disinfection by the photo-Fenton process at circumneutral pH. Chemical Engineering Journal 403. http://doi.org/10.1016/j.cej.2020.126335
  • Duffie J A & Beckman W A (2013). Solar Engineering of Thermal Processes. John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Fatmi M, Schaad N & Bolkan H (1991). Seed treatments for eradicating Clavibacter michiganensis subsp. michiganensis from naturally infected tomato seeds. Plant Disease 75(4): 383-385. http://doi.org/10.1094/PD-75-0383
  • Fatta-Kassinos D, Dionysiou D D & Kümmerer K (2016). Wastewater Reuse and Current Challenges. Springer International Publishing, Switzerland.
  • Forte Giacobone A F & Oppezzo O J (2015). Survival of Pseudomonas aeruginosa exposed to sunlight resembles the phenom of persistence. Journal of Photochemistry and Photobiology B: Biology 142: 232-236. http://doi.org/10.1016/j.jphotobiol.2014.12.012
  • Grondeau C, Ladonne F, Fourmond A, Poutier F & Samson R (1992). Attempt to eradicate Pseudomonas syringae pv. pisi from pea seeds with heat treatments. Seed Science and Technology 20(3): 515-525.
  • Gross A, Stangl F, Hoenes K, Sift M & Hessling M (2015). Improved Drinking Water Disinfection with UVC-LEDs for Escherichia Coli and Bacillus Subtilis Utilizing Quartz Tubes as Light Guide. Water 7(12): 4605-4621. http://doi.org/10.3390/w7094605
  • Gunasekera T & Paul N (2007). Ecological impact of solar ultraviolet‐B (UV‐B: 320–290 nm) radiation on Corynebacterium aquaticum and Xanthomonas sp. colonization on tea phyllosphere in relation to blister blight disease incidence in the field. Letters in applied microbiology 44(5): 513-519. http://doi.org/10.1111/j.1472-765X.2006.02102.x
  • Hao W, Ahonsi M, Vinatzer B & Hong C (2012). Inactivation of Phytophthora and bacterial species in water by a potential energy-saving heat treatment. European journal of plant pathology 134(2): 357-365. http://doi.org/ 10.1007/s10658-012-9994-4
  • Honervogt B & Lehmann‐Danzinger H (1992). Comparison of thermal and chemical treatment of cotton seed to control bacterial blight (Xanthomonas campestris pv. malvacearum). Journal of Phytopathology 134(2): 103-109. http://doi.org/10.1111/j.1439-0434.1992.tb01218.x
  • Kim J K, Petin V G & Zhurakovskaya G P (2001). Exposure rate as a determinant of the synergistic interaction of heat combined with ionizing or ultraviolet radiation in cell killing. Journal of radiation research 42(4): 361-369. http://doi.org/10.1269/jrr.42.361
  • Lamichhane J R & Bartoli C (2015). Plant pathogenic bacteria in open irrigation systems: what risk for crop health? Plant Pathology 64(4): 757-766. http://doi.org/10.1111/ppa.12371
  • LAPIS Semiconductor Co. (2013). ML8511 UV sensor datasheet. LAPIS Semiconductor Co, Yokohama, Japan.
  • Maktabi S, Watson I & Parton R (2011). Synergistic effect of UV, laser and microwave radiation or conventional heating on E. coli and on some spoilage and pathogenic bacteria. Innovative Food Science & Emerging Technologies 12(2): 129-134. http://doi.org/10.1016/j.ifset.2010.12.011
  • Miller C D, Mortensen W S, Braga G U L & Anderson A J (2001). The rpoS Gene in Pseudomonas syringae Is Important in Surviving Exposure to the Near-UV in Sunlight. Current Microbiology 43(5): 374-377. http://doi.org/10.1007/s002840010319
  • Petin V G, Zhurakovskaya G P & Komarova L N (1997). Fluence rate as a determinant of synergistic interaction under simultaneous action of UV light and mild heat in Saccharomyces cerevisiae. Journal of Photochemistry and Photobiology B: Biology 38(2): 123-128. http://doi.org/10.1016/s1011-1344(96)07449-0
  • Rai R, Dash P K, Prasanna B M & Singh A (2006). Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype: isolation, identification and enumeration. World Journal of Microbiology and Biotechnology 23(6): 853-858. http://doi.org/10.1007/s11274-006-9309-z
  • Roshith M, Pathak A, Nanda Kumar A K, Anantharaj G, Saranyan V, Ramasubramanian S, Satheesh Babu T G & Ravi Kumar D V (2021). Continuous flow solar photocatalytic disinfection of E. coli using red phosphorus immobilized capillaries as optofluidic reactors. Applied Surface Science 540. http://doi.org/10.1016/j.apsusc.2020.148398
  • Scarlett K, Collins D, Tesoriero L, Jewell L, van Ogtrop F & Daniel R (2016). Efficacy of chlorine, chlorine dioxide and ultraviolet radiation as disinfectants against plant pathogens in irrigation water. European Journal of Plant Pathology 145(1): 27-38. http://doi.org/10.1007/s10658-015-0811-8
  • Şen Z (2015). Applied drought modeling, prediction, and mitigation. Elsevier Science, Amsterdam, Netherlands.
  • Sholberg P L, Randall P & Hampson C R (2005). Acetic Acid Fumigation of Apple Rootstocks and Tree Fruit Scionwood to Remove External Microflora and Potential Plant Pathogens. HortTechnology 15(3): 591-596. http://doi.org/10.21273/horttech.15.3.0591
  • Spinks A T, Dunstan R, Harrison T, Coombes P & Kuczera G (2006). Thermal inactivation of water-borne pathogenic and indicator bacteria at sub-boiling temperatures. Water research 40(6): 1326-1332. http://doi.org/10.1016/j.watres.2006.01.032
  • Tang J (2007). Heat Treatments for Postharvest Pest Control: Theory and Practice. CAB International, Trowbridge, UK.
  • Toben H & Rudolph K (1997). Control of Umbel Blight and Seed Decay of Coriander (Pseudomonas syringae pv. coriandricola), Pseudomonas Syringae Pathovars and Related Pathogens. Springer, Dordrecht, pp. 611-616.
  • Tripanagnostopoulos Y & Rocamora M C (2008 of Conference). Use of solar thermal collectors for disinfection of greenhouse hydroponic water. In: International symposium on high technology for greenhouse system management: Greensys 2007 801, Naples, Italy, pp. 749-756. http://doi.org/10.17660/ActaHortic.2008.801.87
  • Tu J C & Zhang W Z (2000). Comparison of heat, sonication and ultraviolet irradiation in eliminating Pythium aphanidermatum zoospores in recirculating nutrient solution. 1 September, Grugliasco (Torino), Italy, pp. 137-144. http://doi.org/10.17660/ActaHortic.2000.532.16
  • Turechek W W & Peres N A (2009). Heat treatment effects on strawberry plant survival and angular leaf spot, caused by Xanthomonas fragariae, in nursery production. Plant Disease 93(3): 299-308. http://doi.org/10.1094/pdis-93-3-0299
  • Tyrrell R M (1976). Synergistic lethal action of ultraviolet‐violet radiations and mild heat in Escherichia coli. Photochemistry and photobiology 24(4): 345-351. http://doi.org/10.1111/j.1751-1097.1976.tb06835.x
  • Wolf J & Beckhoven J (2004). Factors affecting survival of Clavibacter michiganensis subsp. sepedonicus in water. Journal of Phytopathology 152(3): 161-168. http://doi.org/10.1111/j.1439-0434.2004.00820.x
  • Wolfe R L (1990). Ultraviolet disinfection of potable water. Environmental Science & Technology 24(6): 768-773. http://doi.org/10.1021/es00076a001

Elimination of Plant Pathogenic Bacteria by Solar Ultraviolet Radiation in Hydroponic Systems

Year 2022, Volume: 28 Issue: 2, 342 - 350, 25.04.2022
https://doi.org/10.15832/ankutbd.824305

Abstract

Removing plant pathogens with the sun as a free, available, clean, and sustainable source of energy is interesting. However, there is no data for disinfecting major plant pathogenic bacteria such as Pseudomonas syringae and Clavibacter michiganensis subsp. michiganensis by solar ultraviolet radiation. To obtain the required time for killing these bacteria at different temperatures, a bacterial suspension of active growing cells (approximately 107 CFU mL-1) was prepared and subjected to heat inside a water bath. The minimum required time for killing both of the bacteria was achieved 420, 45, and 15 min at 50, 55, and 60 °C, respectively. To examine the effect of solar ultraviolet radiation, the bacteria suspensions inside a quartz tube were exposed to the sun on a horizontal surface at the constant temperature of 50 °C within the water bath (water depth: 0.1 m). Both of the bacteria were killed after one hour by receiving 95.481 kJ m-2 ultraviolet and 2.79315 MJ m-2 solar radiation doses. The synergy of heat and solar UV could considerably reduce the killing time of the bacteria (7 to 1 hours) at 50 °C. The recommended solar UV dose is 95.481 kJ m-2 for this condition.

References

  • Andreu J, Solera A, Paredes-Arquiola J, Haro-Monteagudo D & Van Lanen H (2015). Drought: research and science-policy interfacing. CRC Press, London, UK.
  • Aniruddha Bhalchandra P & Jyoti Kishen K (2013). Drinking Water Disinfection Techniques. CRC Press, Boca Raton, Florida, USA.
  • Bella P, Greco S, Polizzi G, Cirvilleri G & Catara V (2002). Soil fitness and thermal sensitivity of Pseudomonas corrugata strains. Ragusa-Sicily, Italy, pp. 831-836. http://doi.org/10.17660/ActaHortic.2003.614.122
  • Berney M, Weilenmann H, Ihssen J, Bassin C & Egli T (2006). Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Applied and environmental microbiology 72(4): 2586-2593. http://doi.org/10.1128/aem.72.4.2586-2593.2006
  • Bolton J R & Cotton C A (2008). The Ultraviolet Disinfection Handbook, First ed. American Water Works Association, Denver, USA.
  • Burch J D & Thomas K E (1998). An Overview of Water Disinfection in Developing Countries and the Potential for Solar Thermal Water Pasteurization. National Renewable Energy Laboratory, Golden, Colorado.
  • Caldwell M M, Bornman J F, Ballar C L, Flint S D & Kulandaivelu G (2007). Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical & Photobiological Sciences 6(3). http://doi.org/10.1039/b700019g
  • Casado C, Moreno-SanSegundo J, De la Obra I, Esteban García B, Sánchez Pérez J A & Marugán J (2021). Mechanistic modelling of wastewater disinfection by the photo-Fenton process at circumneutral pH. Chemical Engineering Journal 403. http://doi.org/10.1016/j.cej.2020.126335
  • Duffie J A & Beckman W A (2013). Solar Engineering of Thermal Processes. John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Fatmi M, Schaad N & Bolkan H (1991). Seed treatments for eradicating Clavibacter michiganensis subsp. michiganensis from naturally infected tomato seeds. Plant Disease 75(4): 383-385. http://doi.org/10.1094/PD-75-0383
  • Fatta-Kassinos D, Dionysiou D D & Kümmerer K (2016). Wastewater Reuse and Current Challenges. Springer International Publishing, Switzerland.
  • Forte Giacobone A F & Oppezzo O J (2015). Survival of Pseudomonas aeruginosa exposed to sunlight resembles the phenom of persistence. Journal of Photochemistry and Photobiology B: Biology 142: 232-236. http://doi.org/10.1016/j.jphotobiol.2014.12.012
  • Grondeau C, Ladonne F, Fourmond A, Poutier F & Samson R (1992). Attempt to eradicate Pseudomonas syringae pv. pisi from pea seeds with heat treatments. Seed Science and Technology 20(3): 515-525.
  • Gross A, Stangl F, Hoenes K, Sift M & Hessling M (2015). Improved Drinking Water Disinfection with UVC-LEDs for Escherichia Coli and Bacillus Subtilis Utilizing Quartz Tubes as Light Guide. Water 7(12): 4605-4621. http://doi.org/10.3390/w7094605
  • Gunasekera T & Paul N (2007). Ecological impact of solar ultraviolet‐B (UV‐B: 320–290 nm) radiation on Corynebacterium aquaticum and Xanthomonas sp. colonization on tea phyllosphere in relation to blister blight disease incidence in the field. Letters in applied microbiology 44(5): 513-519. http://doi.org/10.1111/j.1472-765X.2006.02102.x
  • Hao W, Ahonsi M, Vinatzer B & Hong C (2012). Inactivation of Phytophthora and bacterial species in water by a potential energy-saving heat treatment. European journal of plant pathology 134(2): 357-365. http://doi.org/ 10.1007/s10658-012-9994-4
  • Honervogt B & Lehmann‐Danzinger H (1992). Comparison of thermal and chemical treatment of cotton seed to control bacterial blight (Xanthomonas campestris pv. malvacearum). Journal of Phytopathology 134(2): 103-109. http://doi.org/10.1111/j.1439-0434.1992.tb01218.x
  • Kim J K, Petin V G & Zhurakovskaya G P (2001). Exposure rate as a determinant of the synergistic interaction of heat combined with ionizing or ultraviolet radiation in cell killing. Journal of radiation research 42(4): 361-369. http://doi.org/10.1269/jrr.42.361
  • Lamichhane J R & Bartoli C (2015). Plant pathogenic bacteria in open irrigation systems: what risk for crop health? Plant Pathology 64(4): 757-766. http://doi.org/10.1111/ppa.12371
  • LAPIS Semiconductor Co. (2013). ML8511 UV sensor datasheet. LAPIS Semiconductor Co, Yokohama, Japan.
  • Maktabi S, Watson I & Parton R (2011). Synergistic effect of UV, laser and microwave radiation or conventional heating on E. coli and on some spoilage and pathogenic bacteria. Innovative Food Science & Emerging Technologies 12(2): 129-134. http://doi.org/10.1016/j.ifset.2010.12.011
  • Miller C D, Mortensen W S, Braga G U L & Anderson A J (2001). The rpoS Gene in Pseudomonas syringae Is Important in Surviving Exposure to the Near-UV in Sunlight. Current Microbiology 43(5): 374-377. http://doi.org/10.1007/s002840010319
  • Petin V G, Zhurakovskaya G P & Komarova L N (1997). Fluence rate as a determinant of synergistic interaction under simultaneous action of UV light and mild heat in Saccharomyces cerevisiae. Journal of Photochemistry and Photobiology B: Biology 38(2): 123-128. http://doi.org/10.1016/s1011-1344(96)07449-0
  • Rai R, Dash P K, Prasanna B M & Singh A (2006). Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype: isolation, identification and enumeration. World Journal of Microbiology and Biotechnology 23(6): 853-858. http://doi.org/10.1007/s11274-006-9309-z
  • Roshith M, Pathak A, Nanda Kumar A K, Anantharaj G, Saranyan V, Ramasubramanian S, Satheesh Babu T G & Ravi Kumar D V (2021). Continuous flow solar photocatalytic disinfection of E. coli using red phosphorus immobilized capillaries as optofluidic reactors. Applied Surface Science 540. http://doi.org/10.1016/j.apsusc.2020.148398
  • Scarlett K, Collins D, Tesoriero L, Jewell L, van Ogtrop F & Daniel R (2016). Efficacy of chlorine, chlorine dioxide and ultraviolet radiation as disinfectants against plant pathogens in irrigation water. European Journal of Plant Pathology 145(1): 27-38. http://doi.org/10.1007/s10658-015-0811-8
  • Şen Z (2015). Applied drought modeling, prediction, and mitigation. Elsevier Science, Amsterdam, Netherlands.
  • Sholberg P L, Randall P & Hampson C R (2005). Acetic Acid Fumigation of Apple Rootstocks and Tree Fruit Scionwood to Remove External Microflora and Potential Plant Pathogens. HortTechnology 15(3): 591-596. http://doi.org/10.21273/horttech.15.3.0591
  • Spinks A T, Dunstan R, Harrison T, Coombes P & Kuczera G (2006). Thermal inactivation of water-borne pathogenic and indicator bacteria at sub-boiling temperatures. Water research 40(6): 1326-1332. http://doi.org/10.1016/j.watres.2006.01.032
  • Tang J (2007). Heat Treatments for Postharvest Pest Control: Theory and Practice. CAB International, Trowbridge, UK.
  • Toben H & Rudolph K (1997). Control of Umbel Blight and Seed Decay of Coriander (Pseudomonas syringae pv. coriandricola), Pseudomonas Syringae Pathovars and Related Pathogens. Springer, Dordrecht, pp. 611-616.
  • Tripanagnostopoulos Y & Rocamora M C (2008 of Conference). Use of solar thermal collectors for disinfection of greenhouse hydroponic water. In: International symposium on high technology for greenhouse system management: Greensys 2007 801, Naples, Italy, pp. 749-756. http://doi.org/10.17660/ActaHortic.2008.801.87
  • Tu J C & Zhang W Z (2000). Comparison of heat, sonication and ultraviolet irradiation in eliminating Pythium aphanidermatum zoospores in recirculating nutrient solution. 1 September, Grugliasco (Torino), Italy, pp. 137-144. http://doi.org/10.17660/ActaHortic.2000.532.16
  • Turechek W W & Peres N A (2009). Heat treatment effects on strawberry plant survival and angular leaf spot, caused by Xanthomonas fragariae, in nursery production. Plant Disease 93(3): 299-308. http://doi.org/10.1094/pdis-93-3-0299
  • Tyrrell R M (1976). Synergistic lethal action of ultraviolet‐violet radiations and mild heat in Escherichia coli. Photochemistry and photobiology 24(4): 345-351. http://doi.org/10.1111/j.1751-1097.1976.tb06835.x
  • Wolf J & Beckhoven J (2004). Factors affecting survival of Clavibacter michiganensis subsp. sepedonicus in water. Journal of Phytopathology 152(3): 161-168. http://doi.org/10.1111/j.1439-0434.2004.00820.x
  • Wolfe R L (1990). Ultraviolet disinfection of potable water. Environmental Science & Technology 24(6): 768-773. http://doi.org/10.1021/es00076a001
There are 37 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Rouhollah Farhadi This is me 0000-0003-1764-178X

Rahman Farrokhi Teimourlou 0000-0002-9084-9838

Youbert Ghosta This is me 0000-0003-4038-2448

Publication Date April 25, 2022
Submission Date November 11, 2020
Acceptance Date May 26, 2021
Published in Issue Year 2022 Volume: 28 Issue: 2

Cite

APA Farhadi, R., Farrokhi Teimourlou, R., & Ghosta, Y. (2022). Elimination of Plant Pathogenic Bacteria by Solar Ultraviolet Radiation in Hydroponic Systems. Journal of Agricultural Sciences, 28(2), 342-350. https://doi.org/10.15832/ankutbd.824305

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).