Isolation and Characterization of Rhizospheric Bacteria from Vuralia turcica Rhizospheric Soil
Year 2023,
Volume: 29 Issue: 1, 308 - 316, 31.01.2023
Cem Çiftçi
,
Dilek Tekdal
,
Burçin Çıngay
,
Selim Çetiner
Abstract
Plant growth-promoting rhizobacteria are highly active in soil ecosystems for legumes due to their biotic activities. Vuralia turcica (Kit Tan, Vural & Kucukoduk) Uysal & Ertugrul is a Turkish endemic legume plant with potential value as ornamental and food crops. However, reports of plant growth-promoting rhizobacteria in V. turcica rhizosphere are lacking in the literature. The purpose of this study was the isolation and characterization of endophytic bacteria from V. turcica rhizospheric soil. Ten bacterial strains were isolated and identified by comparing the 16S rRNA and 16S-23S rRNA ITS region. 4 isolates belonged to Bacillus megaterium, 3 strains belonged to Stenotrophomonas rhizophila, 1 strain belonged to Rhodococcus erythropolis, 1 strain belonged to Xanthomonas albilineans. The remaining 1 strain belonged to Lysobacter enzymogenes, respectively.
Thanks
The authors are grateful to the Nezahat Gökyiğit Botanical Garden for providing the materials in the study and thank Dr. Mustafa Atilla Yazıcı and Yusuf Tutuş for their technical assistance in the mineral element analysis.
References
- Referans1. Altschul S F, Gish W, Miller W, Myers E W & Lipman D (1990). Basic local alignment search tool. Journal of Molecular Biology 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Referans2. Antoun H & Prévost D (2005). Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA, editör. PGPR: Biocontrol and Biofertilization. Dordrecht, Springer, pp. 1-38. https://doi.org/10.1007/1-4020-4152-7_1
- Referans3. Arceneaux J E & Byers B R (1980). Ferrisiderophore reductase activity in Bacillus megaterium. Journal of Bacteriology 141: 715-721. https://doi.org/10.1128/jb.141.2.715-721.1980
- Referans4. Arkhipova T N, Veselov S U, Melentiev A I, Martynenko E V & Kudoyarova G R (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil 272: 201-209. https://doi.org/10.1007/s11104-004-5047-x
- Referans5. Barassi, C, Ayrault G, Creus C, Sueldo R & Sobrero M (2006). Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Scientia Horticulturae 109: 8-14. https://doi.org/10.1016/j.scienta.2006.02.025
- Referans6. Barros L R N, Barbosa De Oliveira L, Barros M W, Oliveira Médici L & Pimentel C (2018). Interaction of biological nitrogen fixation with sowing nitrogen fertilization on common bean in the two seasons of cultivation in Brazil. Journal of Plant Nutrition 41: 774–781. https://doi.org/10.1080/01904167.2018.1426016
- Referans7. Bhattacharyya P N & Jha D K (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology 28: 1327–1350. https://doi.org/10.1007/s11274-011-0979-9
- Referans8. Cornelis P & Simon C A (2010). Iron Uptake and Homeostasis in Microorganisms. Caister Academic Press. https://doi.org/10.21775/9781910190791
- Referans9. Egamberdieva D, Jabborova D & Berg G (2016). Synergistic interactions between Bradyrhizobium japonicum and the Endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of Soybean under salt stress. Plant and Soil 405: 35–45. https://doi.org/10.1007/s11104-015-2661-8
- Referans10. Elkoca E, Kantar F & Sahin F (2007). Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. Journal of Plant Nutrition 31: 157–71. https://doi.org/10.1080/01904160701742097
- Referans11. Esringu A, Turan M, Gunes A & Karaman M R (2014). Roles of Bacillus megaterium in remediation of boron, lead, and cadmium from contaminated soil. Communications in Soil Science and Plant Analysis 45: 1741–1759. https://doi.org/10.1080/00103624.2013.875194
- Referans12. Felsensteın J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783–91. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- Referans13. Figueiredo M V B, Seldin L, Fernando De Araujo F & Mariano R (2010). Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK, editor. Plant Growth and Health Promoting Bacteria. Berlin Heidelberg, Springer-Verlag, pp. 21–43. https://doi.org/10.1007/978-3-642-13612-2_2
- Referans14. Hohapatra S P, Siebel M A & Alaerts G J (1993). Effect of Bacillus megaterium on removal of copper from aqueous solutions by activated carbon. Journal of Environmental Science and Health Part A 28: 615–629. https://doi.org/10.1080/10934529309375898
- Referans15. Jackson M L (1959). Soil Chemical Analysis. Englewood Cliffs, New Jersey. https://doi.org/10.1002/jpln.19590850311
- Referans16. Jochum C C, Osborne L E & Yuen G Y (2006). Fusarium head blight biological control with Lysobacter enzymogenes strain C3. Biological Control 39: 336–344. https://doi.org/10.1016/j.biocontrol.2006.05.004
- Referans17. Karadeniz A, Topcuoglu S F & Inan S (2006). Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World Journal of Microbiology and Biotechnology 22: 1061–1064. https://doi.org/10.1007/s11274-005-4561-1
- Referans18. Kimura M (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120. https://doi.org/10.1007/BF01731581
- Referans19. Kloepper J W, Leong J, Teintze M & Schroth M N (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886. https://doi.org/10.1038/286885a0
- Referans20. Kloepper J W (1994). Plant growth promoting rhizobacteria (other systems). In: Okon Y, editor. Azospirullum/Plant Associations., Boca Raton, FL, USA, CRC Press pp. 137–166.
- Referans21. Kucey R M N, Janzen H H & Leggett M E (1989). Microbially mediated increases in plant-available phosphorus. Advances in Agronomy 42: 199–228. https://doi.org/10.1016/S0065-2113(08)60525-8
- Referans22. Kumawat S M, Dhakar L L & Maliwal P L (2000). Effect of ırrigation regimes and nitrogen on yield, oil content and nutrient uptake of soybean (Glycine max). Indian Journal of Agronomy 45: 361–366.
- Referans23. Labuschagne N, Pretorius T & Idris A H (2010). Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases: In: Maheshwari DK, editor. Plant Growth and Health Promoting Bacteria. Berlin, Heidelberg, Springer, pp. 211–230. https://doi.org/10.1007/978-3-642-13612-2_9
- Referans24. Lindsay W L & Norvell W A (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42: 421–28. https://doi.org/10.2136/sssaj1978.03615995004200030009x
- Referans25. López-Bucio J, Campos-Cuevas J C, Hernández-Calderón E, Velásquez-Becerra C, Farias-Rodriguez R, Macias-Rodriguez L I & Valencia-Cantero E (2007). Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions 20: 207–217. https://doi.org/10.1094/MPMI-20-2-0207
- Referans26. Mathiyazhagan S, Kavitha K, Nakkeeran S, Chandrasekar G, Manian K, Renukadevi P, Krishnamoorthy A S & Fernando W G D (2004). PGPR mediated management of stem blight of Phyllanthus amarus (Schum and Thonn) caused by Corynespora cassiicola (Berk and Curt) Wei. Archives of Phytopathology and Plant Protection 37: 183–199. https://doi.org/10.1080/03235400410001730658
- Referans27. Ngoma L, Babalola O O, Ahmad F (2012). Ecophysiology of plant growth promoting bacteria. Scientific Research and Essays 7: 4003–4013. https://doi.org/10.5897/SRE12.646
- Referans28. Olsen S R, Cole C V, Watanabe F S & Dean L A (1954). Estimation of available phosphorus in soil by extraction with sodiumbicarbonate. USDA Circular. Washington, D.C.: United States Department of Agriculture.
- Referans29. Ortiz-Castro R, Valencia-Cantero E & López-Bucio J (2008). Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signaling and Behavior 3: 263–65. https://doi.org/10.4161/psb.3.4.5204
- Referans30. Patel G, Singh S, Saxena S K & Kamal J K (2016). Isolation, biochemical characterization and production of biofertilizer from Bacillus megaterium. International Journal of Life-Sciences Scientific Research 2: 749–752. https://doi.org/10.21276/ijlssr.2016.2.6.16
- Referans31. Persello-Cartieaux F, David P, Sarrobert C, Thibaud M C, Achouak W, Robaglia C & Nussaume L (2001). Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 212: 190–198. https://doi.org/10.1007/s004250000384
- Referans32. Richards L A (1954). Diagnosis and improvement of saline and alkali soils. California: U. S. Department of Agriculture, Agriculture handbook, no. 60.
- Referans33. Roopa B, Maya C & Makari H K (2012). Effect of different PGPR strains along with Rhizobium on nodulation and chickpea productivity. Asian Journal of Experimental Biological Sciences 3: 424-426.
- Referans34. Saitou N & Nei M (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
- Referans35. Santos S, Neto I F F, Machado M D, Soares H M V & Soares E V (2014). Siderophore production by Bacillus megaterium: Effect of growth phase and cultural conditions. Applied Biochemistry and Biotechnology 172: 549–560. https://doi.org/10.1007/s12010-013-0562-y
- Referans36. Stülke J & Hllen W (2000). Regulation of carbon catabolism in Bacillus species. Annual Reviews in Microbiology 54: 849–880. https://doi.org/10.1146/annurev.micro.54.1.849
- Referans37. Şahin F, Kotan R & Donmez M F (1999). First report of bacterial blight of Mulberries caused by Pseudomonas syringae pv. mori in the eastern Anatolia Region of Turkey. Plant Disease 83: 1176. https://doi.org/10.1094/PDIS.1999.83.12.1176B
- Referans38. Tan K, Vural M & Küçüködük M (1983). An unusual new Thermopsis from Turkey. Notes Royal Botanical Garden Edinburgh 40(3): 515-518.
- Referans39. Tamura K (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution 9: 678-687. https://doi.org/10.1093/oxfordjournals.molbev.a040752
- Referans40. Tekdal D, Cingay B & Cetiner S (2018). Determination of soil nutrient status in Vuralia turcica populations growing at different locations in the Central Anatolia Region of Turkey. Turkish Journal of Botany 42(3): 317–326. https://doi.org/10.3906/bot-1708-3
- Referans41. Trivedi P, Pandey A & SA T (2007). Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7905. Journal of Basic Microbiology 47: 513–517. https://doi.org/10.1002/jobm.200700224
- Referans42. Uysal T, Ertuğrul K & Bozkurt M (2014). A new genus segregated from Thermopsis (Fabaceae: Papilionoideae): Vuralia. Plant Systematics and Evolution 300: 1627-1637. https://doi.org/10.1007/s00606-014-0988-x
- Referans43. Vacheron J, Desbrosses G, Bouffaud M L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F & Prigent-Combaret C (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science 4: 356. https://doi.org/10.3389/fpls.2013.00356
- Referans44. Vary P S, Biedendieck R, Fuerch T, Meinhardt F, Rohde M, Deckwer W D & Jahn D (2007). Bacillus megaterium from simple soil bacterium to industrial protein production host. Applied Microbiology and Biotechnology 76: 957–967. https://doi.org/10.1007/s00253-007-1089-3
- Referans45. Vincent J M (1970). A manual for the practical study of root-nodule bacteria. Blackwell, Oxford.
- Referans46. Yildirim E, Taylor A & Spittler T D (2006). Ameliorative effects of biological treatments on growth of squash plants under salts tress. Scientia Horticulturae 111: 1-6. https://doi.org/10.1016/j.scienta.2006.08.003
- Referans47. Zhang C & Kong F (2014). Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology 82: 18-25. https://doi.org/10.1016/j.apsoil.2014.05.002
- Referans48. Zhang R Y, Shan H L, Li W F, Cang X Y, Wang X Y, Yin J, Luo Z M & Huang Y K (2017). First report of sugarcane leaf scald caused by Xanthomonas albilineans in the Province of Guangxi, China. Plant Disease 101: 1541. https://doi.org/10.1094/PDIS-12-16-1774-PDN
Year 2023,
Volume: 29 Issue: 1, 308 - 316, 31.01.2023
Cem Çiftçi
,
Dilek Tekdal
,
Burçin Çıngay
,
Selim Çetiner
References
- Referans1. Altschul S F, Gish W, Miller W, Myers E W & Lipman D (1990). Basic local alignment search tool. Journal of Molecular Biology 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Referans2. Antoun H & Prévost D (2005). Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA, editör. PGPR: Biocontrol and Biofertilization. Dordrecht, Springer, pp. 1-38. https://doi.org/10.1007/1-4020-4152-7_1
- Referans3. Arceneaux J E & Byers B R (1980). Ferrisiderophore reductase activity in Bacillus megaterium. Journal of Bacteriology 141: 715-721. https://doi.org/10.1128/jb.141.2.715-721.1980
- Referans4. Arkhipova T N, Veselov S U, Melentiev A I, Martynenko E V & Kudoyarova G R (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil 272: 201-209. https://doi.org/10.1007/s11104-004-5047-x
- Referans5. Barassi, C, Ayrault G, Creus C, Sueldo R & Sobrero M (2006). Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Scientia Horticulturae 109: 8-14. https://doi.org/10.1016/j.scienta.2006.02.025
- Referans6. Barros L R N, Barbosa De Oliveira L, Barros M W, Oliveira Médici L & Pimentel C (2018). Interaction of biological nitrogen fixation with sowing nitrogen fertilization on common bean in the two seasons of cultivation in Brazil. Journal of Plant Nutrition 41: 774–781. https://doi.org/10.1080/01904167.2018.1426016
- Referans7. Bhattacharyya P N & Jha D K (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology 28: 1327–1350. https://doi.org/10.1007/s11274-011-0979-9
- Referans8. Cornelis P & Simon C A (2010). Iron Uptake and Homeostasis in Microorganisms. Caister Academic Press. https://doi.org/10.21775/9781910190791
- Referans9. Egamberdieva D, Jabborova D & Berg G (2016). Synergistic interactions between Bradyrhizobium japonicum and the Endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of Soybean under salt stress. Plant and Soil 405: 35–45. https://doi.org/10.1007/s11104-015-2661-8
- Referans10. Elkoca E, Kantar F & Sahin F (2007). Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. Journal of Plant Nutrition 31: 157–71. https://doi.org/10.1080/01904160701742097
- Referans11. Esringu A, Turan M, Gunes A & Karaman M R (2014). Roles of Bacillus megaterium in remediation of boron, lead, and cadmium from contaminated soil. Communications in Soil Science and Plant Analysis 45: 1741–1759. https://doi.org/10.1080/00103624.2013.875194
- Referans12. Felsensteın J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783–91. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- Referans13. Figueiredo M V B, Seldin L, Fernando De Araujo F & Mariano R (2010). Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK, editor. Plant Growth and Health Promoting Bacteria. Berlin Heidelberg, Springer-Verlag, pp. 21–43. https://doi.org/10.1007/978-3-642-13612-2_2
- Referans14. Hohapatra S P, Siebel M A & Alaerts G J (1993). Effect of Bacillus megaterium on removal of copper from aqueous solutions by activated carbon. Journal of Environmental Science and Health Part A 28: 615–629. https://doi.org/10.1080/10934529309375898
- Referans15. Jackson M L (1959). Soil Chemical Analysis. Englewood Cliffs, New Jersey. https://doi.org/10.1002/jpln.19590850311
- Referans16. Jochum C C, Osborne L E & Yuen G Y (2006). Fusarium head blight biological control with Lysobacter enzymogenes strain C3. Biological Control 39: 336–344. https://doi.org/10.1016/j.biocontrol.2006.05.004
- Referans17. Karadeniz A, Topcuoglu S F & Inan S (2006). Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World Journal of Microbiology and Biotechnology 22: 1061–1064. https://doi.org/10.1007/s11274-005-4561-1
- Referans18. Kimura M (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120. https://doi.org/10.1007/BF01731581
- Referans19. Kloepper J W, Leong J, Teintze M & Schroth M N (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886. https://doi.org/10.1038/286885a0
- Referans20. Kloepper J W (1994). Plant growth promoting rhizobacteria (other systems). In: Okon Y, editor. Azospirullum/Plant Associations., Boca Raton, FL, USA, CRC Press pp. 137–166.
- Referans21. Kucey R M N, Janzen H H & Leggett M E (1989). Microbially mediated increases in plant-available phosphorus. Advances in Agronomy 42: 199–228. https://doi.org/10.1016/S0065-2113(08)60525-8
- Referans22. Kumawat S M, Dhakar L L & Maliwal P L (2000). Effect of ırrigation regimes and nitrogen on yield, oil content and nutrient uptake of soybean (Glycine max). Indian Journal of Agronomy 45: 361–366.
- Referans23. Labuschagne N, Pretorius T & Idris A H (2010). Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases: In: Maheshwari DK, editor. Plant Growth and Health Promoting Bacteria. Berlin, Heidelberg, Springer, pp. 211–230. https://doi.org/10.1007/978-3-642-13612-2_9
- Referans24. Lindsay W L & Norvell W A (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42: 421–28. https://doi.org/10.2136/sssaj1978.03615995004200030009x
- Referans25. López-Bucio J, Campos-Cuevas J C, Hernández-Calderón E, Velásquez-Becerra C, Farias-Rodriguez R, Macias-Rodriguez L I & Valencia-Cantero E (2007). Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions 20: 207–217. https://doi.org/10.1094/MPMI-20-2-0207
- Referans26. Mathiyazhagan S, Kavitha K, Nakkeeran S, Chandrasekar G, Manian K, Renukadevi P, Krishnamoorthy A S & Fernando W G D (2004). PGPR mediated management of stem blight of Phyllanthus amarus (Schum and Thonn) caused by Corynespora cassiicola (Berk and Curt) Wei. Archives of Phytopathology and Plant Protection 37: 183–199. https://doi.org/10.1080/03235400410001730658
- Referans27. Ngoma L, Babalola O O, Ahmad F (2012). Ecophysiology of plant growth promoting bacteria. Scientific Research and Essays 7: 4003–4013. https://doi.org/10.5897/SRE12.646
- Referans28. Olsen S R, Cole C V, Watanabe F S & Dean L A (1954). Estimation of available phosphorus in soil by extraction with sodiumbicarbonate. USDA Circular. Washington, D.C.: United States Department of Agriculture.
- Referans29. Ortiz-Castro R, Valencia-Cantero E & López-Bucio J (2008). Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signaling and Behavior 3: 263–65. https://doi.org/10.4161/psb.3.4.5204
- Referans30. Patel G, Singh S, Saxena S K & Kamal J K (2016). Isolation, biochemical characterization and production of biofertilizer from Bacillus megaterium. International Journal of Life-Sciences Scientific Research 2: 749–752. https://doi.org/10.21276/ijlssr.2016.2.6.16
- Referans31. Persello-Cartieaux F, David P, Sarrobert C, Thibaud M C, Achouak W, Robaglia C & Nussaume L (2001). Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 212: 190–198. https://doi.org/10.1007/s004250000384
- Referans32. Richards L A (1954). Diagnosis and improvement of saline and alkali soils. California: U. S. Department of Agriculture, Agriculture handbook, no. 60.
- Referans33. Roopa B, Maya C & Makari H K (2012). Effect of different PGPR strains along with Rhizobium on nodulation and chickpea productivity. Asian Journal of Experimental Biological Sciences 3: 424-426.
- Referans34. Saitou N & Nei M (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
- Referans35. Santos S, Neto I F F, Machado M D, Soares H M V & Soares E V (2014). Siderophore production by Bacillus megaterium: Effect of growth phase and cultural conditions. Applied Biochemistry and Biotechnology 172: 549–560. https://doi.org/10.1007/s12010-013-0562-y
- Referans36. Stülke J & Hllen W (2000). Regulation of carbon catabolism in Bacillus species. Annual Reviews in Microbiology 54: 849–880. https://doi.org/10.1146/annurev.micro.54.1.849
- Referans37. Şahin F, Kotan R & Donmez M F (1999). First report of bacterial blight of Mulberries caused by Pseudomonas syringae pv. mori in the eastern Anatolia Region of Turkey. Plant Disease 83: 1176. https://doi.org/10.1094/PDIS.1999.83.12.1176B
- Referans38. Tan K, Vural M & Küçüködük M (1983). An unusual new Thermopsis from Turkey. Notes Royal Botanical Garden Edinburgh 40(3): 515-518.
- Referans39. Tamura K (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution 9: 678-687. https://doi.org/10.1093/oxfordjournals.molbev.a040752
- Referans40. Tekdal D, Cingay B & Cetiner S (2018). Determination of soil nutrient status in Vuralia turcica populations growing at different locations in the Central Anatolia Region of Turkey. Turkish Journal of Botany 42(3): 317–326. https://doi.org/10.3906/bot-1708-3
- Referans41. Trivedi P, Pandey A & SA T (2007). Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7905. Journal of Basic Microbiology 47: 513–517. https://doi.org/10.1002/jobm.200700224
- Referans42. Uysal T, Ertuğrul K & Bozkurt M (2014). A new genus segregated from Thermopsis (Fabaceae: Papilionoideae): Vuralia. Plant Systematics and Evolution 300: 1627-1637. https://doi.org/10.1007/s00606-014-0988-x
- Referans43. Vacheron J, Desbrosses G, Bouffaud M L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F & Prigent-Combaret C (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science 4: 356. https://doi.org/10.3389/fpls.2013.00356
- Referans44. Vary P S, Biedendieck R, Fuerch T, Meinhardt F, Rohde M, Deckwer W D & Jahn D (2007). Bacillus megaterium from simple soil bacterium to industrial protein production host. Applied Microbiology and Biotechnology 76: 957–967. https://doi.org/10.1007/s00253-007-1089-3
- Referans45. Vincent J M (1970). A manual for the practical study of root-nodule bacteria. Blackwell, Oxford.
- Referans46. Yildirim E, Taylor A & Spittler T D (2006). Ameliorative effects of biological treatments on growth of squash plants under salts tress. Scientia Horticulturae 111: 1-6. https://doi.org/10.1016/j.scienta.2006.08.003
- Referans47. Zhang C & Kong F (2014). Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology 82: 18-25. https://doi.org/10.1016/j.apsoil.2014.05.002
- Referans48. Zhang R Y, Shan H L, Li W F, Cang X Y, Wang X Y, Yin J, Luo Z M & Huang Y K (2017). First report of sugarcane leaf scald caused by Xanthomonas albilineans in the Province of Guangxi, China. Plant Disease 101: 1541. https://doi.org/10.1094/PDIS-12-16-1774-PDN