Research Article
BibTex RIS Cite

Effects of 24-Epibrassinolide on Shoot Tip Cultures Under NaCl Stress in Tomato (Solanum lycopersicum L.)

Year 2024, Volume: 30 Issue: 3, 477 - 487, 23.07.2024
https://doi.org/10.15832/ankutbd.1289108

Abstract

The negative effects of salt stress on plants and their environment are increasing dramatically day by day, and it is crucial for plants to develop salt tolerance with various applications and biotechnological approaches. For this purpose, it is possible to improve salt tolerance in plants through different studies using controlled and uniform in vitro cultures, which are an alternative approach to greenhouse and pot experiments that affected by external environmental conditions. In this study, 24-epibrassinolide (24-epiBL) was used for increasing salt tolerance in in vitro shoot tip cultures of tomato M-28 hybrid cultivar. Shoot tips of 10-day sterile seedlings were placed in MS medium supplemented with 2 mg L-1 K + 0.4 mg L-1 NAA in a 12-day culture period, and 12-day plantlets soaked in 24-epiBL solutions (0, 1, 2 μM) were transferred to MS medium containing different concentrations of NaCl (0, 20, 40, 60, 80, 100 mM). After 20 days, the plantlets derived from in vitro cultures were used to assess growth (length, fresh and dry weight of plantlets) and biochemical parameters (pigment, MDA, proline, total soluble protein contents, POX and SOD enzyme activities). All growth and biochemical parameters, including pigment and total soluble protein content, were adversely impacted by salt stress (particularly at 40, 60, 80, and 100 Mm NaCl concentrations). However, MDA, proline content, as well as SOD and POX enzyme activity, increased as a results of oxidative stress at the same NaCl concentrations. As a result, NaCl responses in plant differed between various NaCl and 24-epiBL concentrations, and the different defense strategies combine multiple tolerance mechanisms. Therefore, this study, indicates that pretreatment of 24-epiBL to plantlets derived from shoot tips of the tomato M-28 hybrid cultivar played crucial role in mitigating the effects of salt stress.

Supporting Institution

Scientific Research Projects Coordination Unit of Mugla Sitki Kocman University

Project Number

Mugla, Turkey, project number: 2011/17

Thanks

This article contain a part of the PhD thesis. The all stages of this study was supported by Scientific Research Projects Coordination Unit of Mugla Sitki Kocman University.

References

  • Aazami M A, Torabi M & Jalili E (2010). In vitro response of promising tomato genotypes for tolerance to osmotic stress. African Journal of Biotechnology 9(26): 4014-4017
  • Aazami M A, Rasouli F & Ebrahimzadeh A (2021). Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biology 21: 597-620. doi: 10.1186/s12870-021-03379-7
  • Abdel-Farid I B, Marghany M R, Rowezek M M & Sheded M G (2020). Effect of salinity stress on growth and metabolomic profiling of Cucumis sativus and Solanum lycopersicum. Plants 9: 1626-1645. doi:10.3390/plants9111626
  • Abu-Khadejeh A, Makhadmeh I, Shibli R A & Mohammed M J (2011). Physiological responses of tomato microshoot cultures to in vitro induced salinity stress. Jordan Journal of Agricultural Sciences 7(2): 260-272
  • Ahammed G J, Choudhary S P, Xiaojian Xia S C, Shi K, Zhou Y & Yu J (2012). Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibiton and oxidative stress in tomato. Journal of Experimental Botany 63(2): 695-709. doi: 10.1093/jxb/ers323
  • Ahmad F, Singh A & Kamal A (2018). Crosstalk of brassinosteroids with other phytohormones under various abiotic stresses. Journal of Applied Biology & Biotechnology 6(1): 56-62. doi: 10.7324/JABB.2018.60110
  • Ahmad P, Abd_Allah E F, Alyemeni M N, Wijaya L, Alam P, Bhardwaj R & Siddique K H M (2018). Exogenous application of calcium to 24-epibrassinosteroid pretreated tomato seedlings mitigates NaCl toxicity by modifying ascorbate-glutathione cycle and secondary metabolites. Scientific Reports 8(13515): 1-15. doi:10.1038/s41598-018-31917-1
  • Aly A A, Khafaga A F & Omar G N (2012). Adverse effect of salt stress in Egyptian clover (Trifolium alexandrinum L.) by Asa application through some biochemical and RT-PCR markers. Journal of Applied Phytotechnology in Environmental Sanitation 1(2): 91-102
  • Amini F & Ehsanpour A A (2006). Response of tomato (Lycopersicon esculentum Mill.) cultivars to MS, water agar and salt stress in in vitro culture. Pakistan Journal of Biological Sciences 9(1): 170-175. doi:10.3923/pjbs.2006.170.175
  • Anuradha S & Rao S S R (2001). Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regulation 33: 151-153. doi:10.1023/A:1017590108484
  • Anuradha S & Rao S S R (2003). Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulation 40: 29-32. doi:10.1023/A:1023080720374
  • Anwar A, Liu Y, Dong R, Bai L, Yu X & Yansu L (2018). The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biological Research 51(46): 1-15. doi: 10.1186/s40659-018-0195-2
  • Ashraf M (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27: 84-93. doi: 10.1016/j.biotechadv.2008.09.003
  • Ashraf M & Harris P J C (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3-16. doi:10.1016/j.plantsci.2003.10.024
  • Bates L S, Waldren R P & Teare I D (1973). Rapid determination of free proline for water stress studies. Plant Soil 39: 205-207
  • Beaucamp C & Fridovich I (1971). Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Anal Biochem 444: 276-287
  • Bradford M M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
  • Bressan R A (2010). Stress physiology. In: L Taiz & E Zeiger (Eds.), Plant Physiology, Sinauer Associates, Sunderland, Massachusetts pp.782
  • Cano E A, Perez-Alfocea F, Moreno V, Caro M & Bolarin M C (1998). Evaluation of salt tolerance in cultivated and wild tomato species through in vitro shoot apex culture. Plant Cell, Tissue and Organ Culture 53: 19-26 Chance B & Maehly C (1955). Assay of catalase and peroxidases. Method Enzymol 11: 764-775
  • Cristea T O, Iosob G A & Prisecaru M (2020). Studies regarding the interdependence between the citogenetic aspects and the application of stress factors over the tissues cultivated “in vitro” at tomatoes. Biologie 29(1): 57-60
  • Ding H-D, Zhu X-H, Zhu Z-W, Yang S-J, Zha D-S & Wu X-X (2012). Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Plantarum 56(4): 767-770. doi: 10.1007/s10535-012-0108-0
  • El-Mashad A A A & Mohamed H I (2012). Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma 249: 625-635. doi: 10.1007/s00709-011-0300-7
  • El-Meleigy E-S A, Gabr M F, Mohamed F H & Ismail M A (2004). Responses to NaCl salinity of tomato cultivated and breeding lines differing in salt tolerance in callus cultures. International Journal of Agriculture & Biology 6(1): 19-26
  • El-Sayed T R (2021). Production of tomato lines tolerating to salinity using in-vitro culture technique. Journal of Plant Production 12(12): 1351-1357. doi: 10.21608/JPP.2021.220184
  • Guo M, Wang X-S, Guo H-D, Bai S-Y, Khan A, Wang X-M, Gao Y-M & Li J-S (2022). Tomato salt tolerance mechanisims and their potantial appliations for fighting salinity: a rievew. Frontiers in Plant Science 10:1-22. doi:10.3389/fpls.2022.949541
  • Hassanein A M (2004). Effect of relatively high concentrations of mannitol and sodium chloride on regeneration and gene expression of stress tolerant (Alhagi graecorum) and stress sensitive (Lycopersicon esculentum L.) plant species. Bulgarian Journal of Plant Physiology 30(3-4): 19-36
  • Heath R L & Packer L (1968). Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125: 189-198
  • Houimli S I M, Denten M & Mouhandes B D (2010). Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsian Journal BioSciences 4: 96-104. doi:10.5053/ejobios.2010.4.0.12
  • Hu Y, Xia S, Su Y, Wang H, Luo W, Su S & Xiao L (2016). Brassinolide increases potato root growth in vitro a dose-dependent way and alleviates salinity stress. Biomed Research International 2016: 1-11. doi:10.1155/2016/8231873
  • Iqbal N, Umar S, Khanb N A & Khan M I R (2014). A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism. Environmental and Experimental Botany 100: 34-42. doi:10.1016/j.envexpbot.2013.12.006
  • Khalid A & Aftab F (2016). Effect of exogenous application of 24-epibrassinolide on growth, protein contents, and antioxidant enzyme activities of in vitro-grown Solanum tuberosum L. under salt satress. In Vitro Cellular & Developmental Biology-Plant 52: 81-91. doi:10.1007/s11627-015-9745-2
  • Khaliluev M R, Bogoutdinova L R, Raldugina G N & Baranova E N (2022). A simple and effective bioassay method suitable to comparative in vitro study of tomato salt tolerance at early development stages. Methods and Protocols 5(11): 1-17. doi:10.3390/mps5010011
  • Koca H, Bor M, Özdemir F & Türkan İ (2007). The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany 60: 344-351. doi:10.1016/j.envexpbot.2006.12.005
  • Loganayaki K, Tamizhmathi S, Brinda D, Gayathri S, Mary M C & Mohanlal VA (2020). In vitro evaluation of tomato (Lycopersicon esculentum Mill.), chilli (Capsicum annum L.), cucumber (Cucumis sativus L.) and bhendi (Abelmoschus esculentus L.) for salinity stress. International Journal of Chemical Studies 8(2): 2364-2367. doi:10.22271/chemi.2020.v8.i2aj.9104
  • Lokhande V H, Nikam T D, Patade V Y, Ahire M L & Suprasanna P (2011). Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell, Tissue and Organ Culture 104: 41-49. doi:10.1007/s11240-010-9802-9
  • Mehr Z S (2013). Salt-induced changes in germination and vegetative stages of Anethum graveolens L. Journal of Stress Physiology & Biochemistry 9(2): 189-198.
  • Mercado J A, Sancho-Carrascosa M A, Jimenez-Bermudez S, Peran-Quesada R, Pliego-Alfaro F & Quesada M A (2000). Assessment of in vitro growth of apical stem sections and adventitious organogenesis to evaluate salinity tolerance in cultivated tomato. Plant Cell, Tissue and Organ Culture 62: 101-106. doi:10.1023/A:1026503603399
  • Mohamed A N, Rahman M H, Alsadon A A & Islam R (2007). Accumulation of proline in NaCl-treated callus of six tomato (Lycopersicon esculentum Mill.) cultivars. Plant Tissue Culture and Biotechnology 17(2): 217-220. doi:10.3329/ptcb.v17i2.3242
  • Mohamed A N, Ismail M R, Kadir M A & Saud H M (2011). In vitro performances of hypocotyl and cotyledon explants of tomato cultivars under sodium chloride stress. African Journal of Biotechnology 10(44): 8757-8764. doi:10.5897/AJB10.2222
  • Mudgal V, Madaan N & Mudgal A (2010). Biochemical mechanism of salt tolerance in plant: a review. International Journal of Botany 6(2): 136-143.
  • Murashige T & Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497.
  • Nafie E M, Khalfallah A A & Mansur R M (2015). Syndrome effects of NaCl and epibrassinolide on certain molecular and biochemical activities of salt-sensitive Phaseolus vulgaris cv. Brunco L. grown under in vitro condition. Life Science Journal 12(7): 119-136.
  • Osman M G, Elhadi E A & Khalafalla M M (2011). In vitro screening of some tomato commercial cultivars for salinity tolerant. International Journal of Biotechnology and Biochemistry 7(5): 543-552.
  • Parida A K & Das A B (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: 324-349. doi:10.1016/j.ecoenv.2004.06.010
  • Rashed M R U, Roy M R, Paul S K & Haque M (2016). In vitro screening of salt tolerent genotypes in tomato (Solanum lycopersicum L.). Journal of Horticulture 3(4): 1-8. doi: 10.4172/2376-0354.1000186
  • Rivera P, Moya C & O’Brien J A (2022). Low salt treatment results in plant growth enhancement in tomato seedlings. Plants 11(807): 1-8. doi:10.3390/plants11060807
  • Roșca M, Mihalache G & Stoleru V (2023). Tomato responses to salinity stress: from morphological traits to genetic changes. Frontiers in Plant Science 10:1-26. doi:10.3389/fpls.2023.1118383
  • Sabir F, Sangwan R S, Kumar R & Sangwan N S (2012). Salt stressed-induced responses in growth and metabolism in callus cultures and differentiating in vitro shoots of Indian ginseng (Withania somnifera Dunal). Journal of Plant Growth Regulation 31: 537-548. doi:10.1007/s00344-012-9264-x
  • Sairam R K & Tyagi A (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86(3): 407-421. doi:10.1007/1-4020-4225-6
  • Sané A K, Diallo B, Kane A, Sagna M, Sané D & Sy M O (2021). In vitro germination and early vegetative growth of five tomato (Solanum lycopersicum L.) varieties under salt stress conditions. American Journal of Plant Sciences 12: 796-817. doi: 10.4236/ajps.2021.1210105
  • Seth R & Kendurkar S V (2015). In vitro screening: An effective method for evaluation of commercial cultivars of tomato towards salinity stress. International Journal of Current Microbiology and Applied Sciences 4(1): 725-730
  • Shahbaz M, Ashraf M & Athar H-U-R (2008). Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regulation 55: 51-64. doi:10.1007/s10725-008-9262-y
  • Shahid M A, Pervez M A, Balal R M, Mattson N S, Rashid A, Ahmad R, Ayyub C M & Abbas T (2011). Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Australian Journal of Crop Science 5(5): 500-510
  • Shahid M A, Sarkhosh A, Khan N, Balal R M, Ali S, Rossi L, Gómez C, Mattson N, Nasim W & Garcia-Sanchez F (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 10938): 1-34. doi:10.3390/agronomy10070938
  • Sharma I, Ching E, Saini S, Bhardwaj R & Pati P K (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry 69: 17-26. doi:10.1016/j.plaphy.2013.04.013
  • Shibli R A, Kushad M, Yousef G G & Lila M A (2007). Physiological and biochemical responses of tomato microshoots to induced salinity stress with associated ethylene accumulation. Plant Growth Regulation 51: 159-169. doi:10.1007/s10725-006-9158-7
  • Singh A, Dwivedi P, Kumar V & Pandey D K (2021). Brassinosteroids and their analogs: Feedback in plants under in vitro condition. South African Journal of Botany 143: 256-265. doi:10.1016/j.sajb.2021.08.008
  • Sousa B, Rodrigues F, Soares C, Martins M, Azenha M, Lino-Neto T, Santos C, Cunha A & Fidalgo F (2022). Impact of combined heat and salt stresses on tomato plants—Insights into nutrient uptake and redox homeostasis. Antioxidants 11(478): 1-21. doi:10.3390/antiox11030478
  • Srinieng K, Saisavoey T & Karnchanatat A (2015). Effect of salinity stress on antioxidative enzyme activities in tomato cultured in vitro. Pakistan Journal of Botany 47(1): 1-10.
  • Surgun Y, Yilmaz E, Çöl B & Burun B (2012). Sixth class of plant hormones: brassinosteroids. CBU Journal of Science 8(1): 27-46 (in Turkish)
  • Strain H H & Svec WA (1966). Extraction, separation, estimation and isolation of chlorophylls. In: V P Bernon & G R Seely (Eds). In The Chlorophylls, Academic Press, New York.
  • Szabados L & Savoure A (2009). Proline : a multifunctional amino acid. Trends in Plant Sciences 15(2): 89-97. doi:10.1016/j.tplants.2009.11.009
  • Szczepaniak M & Kulpa D (2012). Response of Lycopersıcum peruvianum L. line to salinity in vitro culture. Folia Pomeranae Universitatis Technologiae Stetinensis seria Agricultura, Alimentaria, Piscaria et Zootechnica 295(22): 53-58
  • Upadhyaya C P, Bagri D S & Upadyay D C (2015). Ascorbic acid and/or 24-epibrassinolide trigger physiological and biochemical responses for the salt stress mitigation in potato (Solanum tuberosum L.). Intenational Journal of Applied Sciences and Biotechnology 3(4): 655-667. doi:10.3126/ijasbt.v3i4.13975
  • Verbruggen N & Hermans C (2008). Proline accumulation in plants: a review. Amino Acids 35: 753-759. doi:10.1007/s00726-008-0061-6
  • Woodward A J & Bennett I J (2005). The effect of salt stress and abcisic acid on proline production, chloropyhll content and growth of in vitro propogated shoots of Eucalypthus camaldulensis. Plant Cell, Tissue and Organ Culture 82: 189-200. doi:10.1007/s11240-005-0515-4
  • Yang C-J, Zhang C, Lu Y-N, Jin J-Q & Wang X-L (2011). The mechanisms of brassinosteroids' action: from signal transduction to plant development. Molecular Plant 4(4): 588-600. doi:10.1093/mp/ssr020
  • Yilmaz E & Burun B (2014). In vitro callus formation and shoot regeneration from hypocotyl and cotyledon explants of tomato (Lycopersicon esculentum Mill.). SDU Journal of Natural and Applied Science 18(3): 105-113 (in Turkish)
  • Yilmaz-Gokdogan E & Burun B (2015). Development of seedling and germination of tomato (Lycopersicon esculentum Mill.) seeds pre-applied 24-epibrassinolide under NaCl stress conditions. Afyon Kocatepe University Journal of Science and Engineering 15: 18-27. doi:10.5578/fmbd.10187 (in Turkish)
  • Yilmaz-Gokdogan E & Burun B (2017). The ameliorative effects of 24-epibrassinolide on shoot organogenesis inhibition occuring under NaCl-stressed conditions in cultures of cotyledon and hypocotyl explants of tomato (Lycopersicon esculentum Mill.). Acta Botanica Croatica 76(2): 163-170. doi:10.1515/botcro-2017-0006
  • Zaki H E M & Yokoi S (2016). A comparative in vitro study of salt tolerance in cultivated tomato and related wild species. Plant Biotechnology 33: 361-372. doi: 10.5511/plantbiotechnology.16.1006a
Year 2024, Volume: 30 Issue: 3, 477 - 487, 23.07.2024
https://doi.org/10.15832/ankutbd.1289108

Abstract

Project Number

Mugla, Turkey, project number: 2011/17

References

  • Aazami M A, Torabi M & Jalili E (2010). In vitro response of promising tomato genotypes for tolerance to osmotic stress. African Journal of Biotechnology 9(26): 4014-4017
  • Aazami M A, Rasouli F & Ebrahimzadeh A (2021). Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biology 21: 597-620. doi: 10.1186/s12870-021-03379-7
  • Abdel-Farid I B, Marghany M R, Rowezek M M & Sheded M G (2020). Effect of salinity stress on growth and metabolomic profiling of Cucumis sativus and Solanum lycopersicum. Plants 9: 1626-1645. doi:10.3390/plants9111626
  • Abu-Khadejeh A, Makhadmeh I, Shibli R A & Mohammed M J (2011). Physiological responses of tomato microshoot cultures to in vitro induced salinity stress. Jordan Journal of Agricultural Sciences 7(2): 260-272
  • Ahammed G J, Choudhary S P, Xiaojian Xia S C, Shi K, Zhou Y & Yu J (2012). Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibiton and oxidative stress in tomato. Journal of Experimental Botany 63(2): 695-709. doi: 10.1093/jxb/ers323
  • Ahmad F, Singh A & Kamal A (2018). Crosstalk of brassinosteroids with other phytohormones under various abiotic stresses. Journal of Applied Biology & Biotechnology 6(1): 56-62. doi: 10.7324/JABB.2018.60110
  • Ahmad P, Abd_Allah E F, Alyemeni M N, Wijaya L, Alam P, Bhardwaj R & Siddique K H M (2018). Exogenous application of calcium to 24-epibrassinosteroid pretreated tomato seedlings mitigates NaCl toxicity by modifying ascorbate-glutathione cycle and secondary metabolites. Scientific Reports 8(13515): 1-15. doi:10.1038/s41598-018-31917-1
  • Aly A A, Khafaga A F & Omar G N (2012). Adverse effect of salt stress in Egyptian clover (Trifolium alexandrinum L.) by Asa application through some biochemical and RT-PCR markers. Journal of Applied Phytotechnology in Environmental Sanitation 1(2): 91-102
  • Amini F & Ehsanpour A A (2006). Response of tomato (Lycopersicon esculentum Mill.) cultivars to MS, water agar and salt stress in in vitro culture. Pakistan Journal of Biological Sciences 9(1): 170-175. doi:10.3923/pjbs.2006.170.175
  • Anuradha S & Rao S S R (2001). Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regulation 33: 151-153. doi:10.1023/A:1017590108484
  • Anuradha S & Rao S S R (2003). Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulation 40: 29-32. doi:10.1023/A:1023080720374
  • Anwar A, Liu Y, Dong R, Bai L, Yu X & Yansu L (2018). The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biological Research 51(46): 1-15. doi: 10.1186/s40659-018-0195-2
  • Ashraf M (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27: 84-93. doi: 10.1016/j.biotechadv.2008.09.003
  • Ashraf M & Harris P J C (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3-16. doi:10.1016/j.plantsci.2003.10.024
  • Bates L S, Waldren R P & Teare I D (1973). Rapid determination of free proline for water stress studies. Plant Soil 39: 205-207
  • Beaucamp C & Fridovich I (1971). Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Anal Biochem 444: 276-287
  • Bradford M M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
  • Bressan R A (2010). Stress physiology. In: L Taiz & E Zeiger (Eds.), Plant Physiology, Sinauer Associates, Sunderland, Massachusetts pp.782
  • Cano E A, Perez-Alfocea F, Moreno V, Caro M & Bolarin M C (1998). Evaluation of salt tolerance in cultivated and wild tomato species through in vitro shoot apex culture. Plant Cell, Tissue and Organ Culture 53: 19-26 Chance B & Maehly C (1955). Assay of catalase and peroxidases. Method Enzymol 11: 764-775
  • Cristea T O, Iosob G A & Prisecaru M (2020). Studies regarding the interdependence between the citogenetic aspects and the application of stress factors over the tissues cultivated “in vitro” at tomatoes. Biologie 29(1): 57-60
  • Ding H-D, Zhu X-H, Zhu Z-W, Yang S-J, Zha D-S & Wu X-X (2012). Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Plantarum 56(4): 767-770. doi: 10.1007/s10535-012-0108-0
  • El-Mashad A A A & Mohamed H I (2012). Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma 249: 625-635. doi: 10.1007/s00709-011-0300-7
  • El-Meleigy E-S A, Gabr M F, Mohamed F H & Ismail M A (2004). Responses to NaCl salinity of tomato cultivated and breeding lines differing in salt tolerance in callus cultures. International Journal of Agriculture & Biology 6(1): 19-26
  • El-Sayed T R (2021). Production of tomato lines tolerating to salinity using in-vitro culture technique. Journal of Plant Production 12(12): 1351-1357. doi: 10.21608/JPP.2021.220184
  • Guo M, Wang X-S, Guo H-D, Bai S-Y, Khan A, Wang X-M, Gao Y-M & Li J-S (2022). Tomato salt tolerance mechanisims and their potantial appliations for fighting salinity: a rievew. Frontiers in Plant Science 10:1-22. doi:10.3389/fpls.2022.949541
  • Hassanein A M (2004). Effect of relatively high concentrations of mannitol and sodium chloride on regeneration and gene expression of stress tolerant (Alhagi graecorum) and stress sensitive (Lycopersicon esculentum L.) plant species. Bulgarian Journal of Plant Physiology 30(3-4): 19-36
  • Heath R L & Packer L (1968). Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125: 189-198
  • Houimli S I M, Denten M & Mouhandes B D (2010). Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsian Journal BioSciences 4: 96-104. doi:10.5053/ejobios.2010.4.0.12
  • Hu Y, Xia S, Su Y, Wang H, Luo W, Su S & Xiao L (2016). Brassinolide increases potato root growth in vitro a dose-dependent way and alleviates salinity stress. Biomed Research International 2016: 1-11. doi:10.1155/2016/8231873
  • Iqbal N, Umar S, Khanb N A & Khan M I R (2014). A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism. Environmental and Experimental Botany 100: 34-42. doi:10.1016/j.envexpbot.2013.12.006
  • Khalid A & Aftab F (2016). Effect of exogenous application of 24-epibrassinolide on growth, protein contents, and antioxidant enzyme activities of in vitro-grown Solanum tuberosum L. under salt satress. In Vitro Cellular & Developmental Biology-Plant 52: 81-91. doi:10.1007/s11627-015-9745-2
  • Khaliluev M R, Bogoutdinova L R, Raldugina G N & Baranova E N (2022). A simple and effective bioassay method suitable to comparative in vitro study of tomato salt tolerance at early development stages. Methods and Protocols 5(11): 1-17. doi:10.3390/mps5010011
  • Koca H, Bor M, Özdemir F & Türkan İ (2007). The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany 60: 344-351. doi:10.1016/j.envexpbot.2006.12.005
  • Loganayaki K, Tamizhmathi S, Brinda D, Gayathri S, Mary M C & Mohanlal VA (2020). In vitro evaluation of tomato (Lycopersicon esculentum Mill.), chilli (Capsicum annum L.), cucumber (Cucumis sativus L.) and bhendi (Abelmoschus esculentus L.) for salinity stress. International Journal of Chemical Studies 8(2): 2364-2367. doi:10.22271/chemi.2020.v8.i2aj.9104
  • Lokhande V H, Nikam T D, Patade V Y, Ahire M L & Suprasanna P (2011). Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell, Tissue and Organ Culture 104: 41-49. doi:10.1007/s11240-010-9802-9
  • Mehr Z S (2013). Salt-induced changes in germination and vegetative stages of Anethum graveolens L. Journal of Stress Physiology & Biochemistry 9(2): 189-198.
  • Mercado J A, Sancho-Carrascosa M A, Jimenez-Bermudez S, Peran-Quesada R, Pliego-Alfaro F & Quesada M A (2000). Assessment of in vitro growth of apical stem sections and adventitious organogenesis to evaluate salinity tolerance in cultivated tomato. Plant Cell, Tissue and Organ Culture 62: 101-106. doi:10.1023/A:1026503603399
  • Mohamed A N, Rahman M H, Alsadon A A & Islam R (2007). Accumulation of proline in NaCl-treated callus of six tomato (Lycopersicon esculentum Mill.) cultivars. Plant Tissue Culture and Biotechnology 17(2): 217-220. doi:10.3329/ptcb.v17i2.3242
  • Mohamed A N, Ismail M R, Kadir M A & Saud H M (2011). In vitro performances of hypocotyl and cotyledon explants of tomato cultivars under sodium chloride stress. African Journal of Biotechnology 10(44): 8757-8764. doi:10.5897/AJB10.2222
  • Mudgal V, Madaan N & Mudgal A (2010). Biochemical mechanism of salt tolerance in plant: a review. International Journal of Botany 6(2): 136-143.
  • Murashige T & Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497.
  • Nafie E M, Khalfallah A A & Mansur R M (2015). Syndrome effects of NaCl and epibrassinolide on certain molecular and biochemical activities of salt-sensitive Phaseolus vulgaris cv. Brunco L. grown under in vitro condition. Life Science Journal 12(7): 119-136.
  • Osman M G, Elhadi E A & Khalafalla M M (2011). In vitro screening of some tomato commercial cultivars for salinity tolerant. International Journal of Biotechnology and Biochemistry 7(5): 543-552.
  • Parida A K & Das A B (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: 324-349. doi:10.1016/j.ecoenv.2004.06.010
  • Rashed M R U, Roy M R, Paul S K & Haque M (2016). In vitro screening of salt tolerent genotypes in tomato (Solanum lycopersicum L.). Journal of Horticulture 3(4): 1-8. doi: 10.4172/2376-0354.1000186
  • Rivera P, Moya C & O’Brien J A (2022). Low salt treatment results in plant growth enhancement in tomato seedlings. Plants 11(807): 1-8. doi:10.3390/plants11060807
  • Roșca M, Mihalache G & Stoleru V (2023). Tomato responses to salinity stress: from morphological traits to genetic changes. Frontiers in Plant Science 10:1-26. doi:10.3389/fpls.2023.1118383
  • Sabir F, Sangwan R S, Kumar R & Sangwan N S (2012). Salt stressed-induced responses in growth and metabolism in callus cultures and differentiating in vitro shoots of Indian ginseng (Withania somnifera Dunal). Journal of Plant Growth Regulation 31: 537-548. doi:10.1007/s00344-012-9264-x
  • Sairam R K & Tyagi A (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86(3): 407-421. doi:10.1007/1-4020-4225-6
  • Sané A K, Diallo B, Kane A, Sagna M, Sané D & Sy M O (2021). In vitro germination and early vegetative growth of five tomato (Solanum lycopersicum L.) varieties under salt stress conditions. American Journal of Plant Sciences 12: 796-817. doi: 10.4236/ajps.2021.1210105
  • Seth R & Kendurkar S V (2015). In vitro screening: An effective method for evaluation of commercial cultivars of tomato towards salinity stress. International Journal of Current Microbiology and Applied Sciences 4(1): 725-730
  • Shahbaz M, Ashraf M & Athar H-U-R (2008). Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regulation 55: 51-64. doi:10.1007/s10725-008-9262-y
  • Shahid M A, Pervez M A, Balal R M, Mattson N S, Rashid A, Ahmad R, Ayyub C M & Abbas T (2011). Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Australian Journal of Crop Science 5(5): 500-510
  • Shahid M A, Sarkhosh A, Khan N, Balal R M, Ali S, Rossi L, Gómez C, Mattson N, Nasim W & Garcia-Sanchez F (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 10938): 1-34. doi:10.3390/agronomy10070938
  • Sharma I, Ching E, Saini S, Bhardwaj R & Pati P K (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry 69: 17-26. doi:10.1016/j.plaphy.2013.04.013
  • Shibli R A, Kushad M, Yousef G G & Lila M A (2007). Physiological and biochemical responses of tomato microshoots to induced salinity stress with associated ethylene accumulation. Plant Growth Regulation 51: 159-169. doi:10.1007/s10725-006-9158-7
  • Singh A, Dwivedi P, Kumar V & Pandey D K (2021). Brassinosteroids and their analogs: Feedback in plants under in vitro condition. South African Journal of Botany 143: 256-265. doi:10.1016/j.sajb.2021.08.008
  • Sousa B, Rodrigues F, Soares C, Martins M, Azenha M, Lino-Neto T, Santos C, Cunha A & Fidalgo F (2022). Impact of combined heat and salt stresses on tomato plants—Insights into nutrient uptake and redox homeostasis. Antioxidants 11(478): 1-21. doi:10.3390/antiox11030478
  • Srinieng K, Saisavoey T & Karnchanatat A (2015). Effect of salinity stress on antioxidative enzyme activities in tomato cultured in vitro. Pakistan Journal of Botany 47(1): 1-10.
  • Surgun Y, Yilmaz E, Çöl B & Burun B (2012). Sixth class of plant hormones: brassinosteroids. CBU Journal of Science 8(1): 27-46 (in Turkish)
  • Strain H H & Svec WA (1966). Extraction, separation, estimation and isolation of chlorophylls. In: V P Bernon & G R Seely (Eds). In The Chlorophylls, Academic Press, New York.
  • Szabados L & Savoure A (2009). Proline : a multifunctional amino acid. Trends in Plant Sciences 15(2): 89-97. doi:10.1016/j.tplants.2009.11.009
  • Szczepaniak M & Kulpa D (2012). Response of Lycopersıcum peruvianum L. line to salinity in vitro culture. Folia Pomeranae Universitatis Technologiae Stetinensis seria Agricultura, Alimentaria, Piscaria et Zootechnica 295(22): 53-58
  • Upadhyaya C P, Bagri D S & Upadyay D C (2015). Ascorbic acid and/or 24-epibrassinolide trigger physiological and biochemical responses for the salt stress mitigation in potato (Solanum tuberosum L.). Intenational Journal of Applied Sciences and Biotechnology 3(4): 655-667. doi:10.3126/ijasbt.v3i4.13975
  • Verbruggen N & Hermans C (2008). Proline accumulation in plants: a review. Amino Acids 35: 753-759. doi:10.1007/s00726-008-0061-6
  • Woodward A J & Bennett I J (2005). The effect of salt stress and abcisic acid on proline production, chloropyhll content and growth of in vitro propogated shoots of Eucalypthus camaldulensis. Plant Cell, Tissue and Organ Culture 82: 189-200. doi:10.1007/s11240-005-0515-4
  • Yang C-J, Zhang C, Lu Y-N, Jin J-Q & Wang X-L (2011). The mechanisms of brassinosteroids' action: from signal transduction to plant development. Molecular Plant 4(4): 588-600. doi:10.1093/mp/ssr020
  • Yilmaz E & Burun B (2014). In vitro callus formation and shoot regeneration from hypocotyl and cotyledon explants of tomato (Lycopersicon esculentum Mill.). SDU Journal of Natural and Applied Science 18(3): 105-113 (in Turkish)
  • Yilmaz-Gokdogan E & Burun B (2015). Development of seedling and germination of tomato (Lycopersicon esculentum Mill.) seeds pre-applied 24-epibrassinolide under NaCl stress conditions. Afyon Kocatepe University Journal of Science and Engineering 15: 18-27. doi:10.5578/fmbd.10187 (in Turkish)
  • Yilmaz-Gokdogan E & Burun B (2017). The ameliorative effects of 24-epibrassinolide on shoot organogenesis inhibition occuring under NaCl-stressed conditions in cultures of cotyledon and hypocotyl explants of tomato (Lycopersicon esculentum Mill.). Acta Botanica Croatica 76(2): 163-170. doi:10.1515/botcro-2017-0006
  • Zaki H E M & Yokoi S (2016). A comparative in vitro study of salt tolerance in cultivated tomato and related wild species. Plant Biotechnology 33: 361-372. doi: 10.5511/plantbiotechnology.16.1006a
There are 71 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Makaleler
Authors

Emel Yılmaz Gökdoğan 0000-0002-8605-7301

Betül Bürün 0000-0002-3758-0630

Project Number Mugla, Turkey, project number: 2011/17
Publication Date July 23, 2024
Submission Date April 28, 2023
Acceptance Date January 16, 2024
Published in Issue Year 2024 Volume: 30 Issue: 3

Cite

APA Yılmaz Gökdoğan, E., & Bürün, B. (2024). Effects of 24-Epibrassinolide on Shoot Tip Cultures Under NaCl Stress in Tomato (Solanum lycopersicum L.). Journal of Agricultural Sciences, 30(3), 477-487. https://doi.org/10.15832/ankutbd.1289108

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).