Research Article
BibTex RIS Cite

Yield Response of Greenhouse Grown Grafted Eggplant to Partial Root Drying and Conventional Deficit Irrigation

Year 2025, Volume: 31 Issue: 2, 516 - 531, 25.03.2025
https://doi.org/10.15832/ankutbd.1560489

Abstract

Global climate change negatively affects life, thus complicating the production of vegetables. In addition to this, very little is known about eggplant cultivation under different irrigation strategies. For example, although water use efficiency gives better results in some plant species and varieties without any decrease in yield when the partial root drying (PRD) technique is used, the PRD technique has not been adequately examined in eggplant cultivation. The potential reactions of grafted and ungrafted eggplant plants under different irrigation water levels (100%, 80%, 60% and 40%) with the use of the conventional and deficit irrigation and PRD technique were investigated in this study. The research was conducted in a glass greenhouse during two cultivation seasons in 2019 and 2020. Irrigation was applied equally to both grafted and ungrafted eggplant plants using the drip irrigation method. In the study were examined the growth, quality criteria, yield, yield components, WUE, IWUE, and ky of eggplant to determine the reactions of grafted and ungrafted eggplant plants under different irrigation applications. It was found in the study that the method and amount of irrigation water applied had a significant effect on the grafted and ungrafted eggplant plants. Irrigation water was applied in the first and second season respectively between 148.45 and 365.48 mm, 245.61 and 584.84 mm. The statistical differences were found in the level of importance of yield, evapotranspiration, water-use efficiency, LSD classification of irrigation water-use efficiency values p<0.01 and/or p<0.05. Regression analysis values between irrigation water and yield of grafted and ungrafted eggplant in both cultivation seasons were found to be at a fairly good level (0.80<R2). In addition, as an important finding, the regression analysis value of grafting in the second season was found to be at the highest level (R2=91). In general, grafted eggplant plants were found to have had a higher total yield than the ungrafted plants. As the amount of irrigation water applied decreased, the yield also decreased. In the first season, the highest yields were recorded statistically in FPRD100, I100 and FPRD80 (45.26, 44.01 and 39.26 t ha-1, respectively). Similarly, in the second season, the highest yields were obtained in I100 and FPRD100 (50.97 and 48.96 t ha-1, respectively) followed by FPRD80 (48.96 t ha-1). The advantages of the PRD technique over conventional and deficit irrigation have also been revealed. As a result of the research, it could be recommended that the cultivation of grafted eggplant seedlings is more suitable, and irrigation applications could be carried out using the PRD technique.

Supporting Institution

Akdeniz University Scientific Research Projects Coordination Unit.

Project Number

FBA-2018-3218

Thanks

This study was supported by the Akdeniz University Scientific Research Projects Coordination Unit. Project Number: FBA-2018-3218.

References

  • Abd El-Wahed M H & Ali E A (2013). Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit. Agricultural Water Management 120: 64–71
  • Al-Hadidi L & Sweity A (2022). Effect of deficit irrigation using treated wastewater on eggplant yields, water productivity, fruit quality and mineral contents. Russian Agricultural Sciences 48(2): 63–73. https://doi.org/10.3103/S1068367422020112
  • Al Ali M, Gençoğlan C & Gençoğlan S (2018). The effect of irrigation water amount on water-yield relationships of eggplant. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi. 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi, Special Issue: 385-393
  • Al-Harbi A R, Al-Omran A M & Alharbi K (2018). Grafting improves cucumber water stress tolerance in Saudi Arabia. Saudi Journal of Biological Sciences 25(2): 298–304. https://doi.org/10.1016/j.sjbs.2017.10.025
  • Anonymous (2000). Long-term climate data for Antalya province. Turkish State Meteorological Service, Antalya.
  • Anonymous (2022). Ministry of Agriculture and Forestry General Directorate of State Hydraulic Works (DSI). https://cevreselgostergeler.csb.gov.tr/su-kullanimi-i-85738.
  • Ayas S (2017). The effects of irrigation regimes on the yield and water use of eggplant (Solanum melongena L.). Soil Water Journal 6(2): 49- 58. https://doi.org/10.21657/topraksu.339835
  • Bhatnagar V & Poonia R C (2018). Design of prototype model for irrigation based decision support system. Journal of Informaton and Optmzaton Scences 39(7): 1607–1612. https://doi.org/ 10.1080/02522667.2018.1507763
  • Bozkurt Çolak Y, Yazar A & Çolak İ (2017). Effect of different deficit irrigation strategies on subsurface drip irrigated eggplant yields and yield components under Cukurova Condition. Alatarım 16(1): 1-10
  • Bozkurt Çolak Y, Yazar A, Gönen E & Eroğlu E Ç (2018). Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns. Agricultural Water Management 206: 165–175. https://doi.org/10.1016/j.agwat.2018.05.010
  • Bozkurt Çolak Y (2019). Effects of irrigation frequency and level on yield and stomatal resistance of eggplant (Solanum melongena L.) grown in open field irrigated with surface and subsurface drip methods. Applied Ecology and Environmental Research 17(6): 15585–15604. DOI: http://dx.doi.org/10.15666/aeer/1706_1558515604
  • Cantürk A, Cemek B, Taşan M & Taşan S (2023). Effect of deficit irrigation on yield, water productivity, energy indices and economic productivity in eggplant cultivation. Gesunde Pflanzen 75: 1579-1589. https://doi.org/10.1007/s10343-022-00814-z
  • Campi P, Mastrorilli M, Stellacci A M, Modugno F & Palumbo A D (2019). Increasing the effective use of water in green aspara gus through deficit irrigation strategies. Agricultural Water Management 217: 119–130
  • Consentino B B, Rouphael Y, Ntatsi G, De Pasquale C, Iapichino G, D’Anna F, La Bella S & Sabatino L (2022). Agronomic performance and fruit quality in greenhouse grown eggplant are interactively modulated by iodine dosage and grafting. Scientia Horticulturae 295: 110891. https://doi.org/10.1016/j.scienta.2022.110891
  • Darko R O, Yuan S, Kumi F & Quaye F (2019). Effect of deficit irrigation on yield and quality of eggplant. International Journal of Environment, Agriculture and Biotechnology 4(5): 1325–1333. https://dx.doi.org/10.22161/ijeab.45.5
  • Diaz-Perez J C & Eaton T E (2015). Eggplant (Solanum melongena L.) plant growth and fruit yield as affected by drip irrigation rate. HortScience 50(11): 1709–1714. https://doi.org/10.21273/HORTSCI.50.11.1709
  • Doorenbos J & Kassam A H (1979). Yield response to water. FAO Irrigation and Drainage Paper No, 33, Rome, pp 193.
  • Dry P R & Loveys B R (1998). Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Australian Journal of Grape and Wine Research 4: 140–148. https://doi.org/10.1111/j.1755-0238.1998.tb00143.x
  • Dry P, Loveys B, Botting D & Düring H (1995). Effects of partial root-zone drying on grapevine vigour, yield, composition of fruit and use of water. In: Proceedings of the ninth Australian Wine Industry Technical Conference pp. 128–131
  • Ertek A, Şensoy S, Küçükyumuk C & Gedik İ (2006). Determination of plant-pan coefficients for field-grown eggplant (Solanum melongena L.) using class A pan evaporation values. Agricultural Water Management 85(1–2): 58–66. https://doi.org/10.1016/ j.agwat.2006.03.013
  • FAO (2024). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL
  • Gisbert C, Prohens J, Raig´on M D, Stommel J R & Nuez F (2011). Eggplant relatives as sources of variation for developing new rootstocks: effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae 128: 14–22. doi:10.1016/j.scienta.2010.12.007
  • Howladar S M (2018). Potassium humate improves physio-biochemical attributes, defense systems activities and water-use efficiencies of eggplant under partial root-zone drying. Scientia Horticulturae 240: 179–185. https://doi.org/10.1016/j.scienta.2018.06.020
  • Ibrahim A, Wahb-Allah M, Abdel-Razzak H & Alsadon A (2014). Growth, yield, quality and water use efficiency of grafted tomato plants grown in greenhouse under dif ferent irrigation levels. Life Science Journal 11(2): 118–126. doi:10.7537/marslsj110214.17
  • Incrocci L, Thompson R B, Fernandez-Fernandez M D, De Pascale S, Pardossi A, Stanghellini C, Rouphael Y & Gallardo M (2020). Irrigation management of European greenhouse vegetable crops. Agricultural Water Management 242: 106393. https://doi.org/10.1016/j.agwat.2020.106393
  • Kaman H, Özbek Ö & Polat E (2022). Response of greenhouse grown cucumber to partial root zone drying and conventional deficit irrigation. KSU J. Agric Nat. 25(2): 337-347. https://doi.org/10.18016/ ksutarimdoga.vi. 883294
  • Kaman H, Özbek Ö & Polat E (2023a). Determination of the effect of different irrigation regimes on some quality properties of cucumber. Journal of Tekirdag Agricultural Faculty 20(2): 318-333. DOI: 10.33462/jotaf.1093951
  • Kaman H, Gübbük H, Tezcan A, Can M & Özbek Ö (2023b). Water-yield relationship of greenhouse-grown strawberry under limited irrigation. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 51(2): 13235. https://doi.org/10.15835/nbha51213235
  • Kaman H, Gübbük H, Tezcan A, Can M & Özbek Ö (2023c). Yield and quality of strawberry under deficit irrigation and fixed partial root drying regimes. Pakistan Journal of Agricultural Sciences 60(4): 555-563. DOI:10.21162/PAKJAS/23.135
  • Kang S, Hu X, Goodwin I & Jerie P (2002). Soil water distribution, water use, and yield response to partial root zone drying under a shallow groundwater table condition in a pear orchard. Scientia Horticulturae 92(3-4): 277-291. https://doi.org/10.1016/S0304-4238(01)00300-4
  • Kang S, Liang Z, Pan Y, Shi P & Zhang J (2000). Alternate furrow irrigation for maize production in an arid area. Agricultural Water Management 45(3): 267-274. https://doi.org/10.1016/S0378-3774(00)00072-X
  • Kang S, Zhang L, Xiaotao H, Li Z & Jerie P (2001). An improved water use efficiency for hot pepper grown under controlled alternate drip irrigation on partial roots. Scientia Horticulturae 89(4): 257–267. https://doi.org/10.1016/S0304-4238(00)00245-4
  • Karam F, Saliba R, Skaf S, Breidy J, Rouphael Y & Balendonck J (2011). Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes. Agricultural Water Management 98(8): 1307-1316. https://doi.org/10.1016/j.agwat.2011.03.012
  • Khah E M, Katsoulas N, Tchamitchain M & Kittas C (2011). Effect of grafting on eggplant leaf gas exchanges under Mediterranean greenhouse conditions. International Journal of Plant Production 5(2): 121–134. https://doi.org/10.22069/ijpp.2012.726
  • Kirda C, Cetin M, Dasgan Y, Topcu S, Kaman H, Ekici B, Derici M R & Ozguven A I (2004). Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural Water Management 69: 191–201. doi:10.1016/j.agwat.2004.04.008
  • Kirda C, Topcu S, Cetin M, Dasgan H Y, Kaman H, Topaloglu F, Derici M R & Ekici B (2007). Prospects of partial root zone irrigation for increasing irrigation water use efficiency of major crops in the Mediterranean region. Annals of Applied Biology 150: 281-291. doi:10.1111/j.1744-7348.2007.00141.x
  • Kumar R, Berwal M K & Saroj P L (2019). Morphological, physiological, biochemical and molecular facet of drought stress in horticultural crops. International Journal of Bio-resource and Stress Management 10(5): 545-560. DOI: HTTPS://DOI.ORG/10.23910/IJBSM/2019.10.5.2031
  • López-Marín J, Gálvez A, del Amor F M, Albacete A, Fernández J A, Egea-Gilabert C & Pérez-Alfocea F (2017). Selecting vegetative/generative/dwarfing rootstocks for improving fruit yield and quality in water stressed sweet peppers. Scientia Horticulturae 214: 9–17. https://doi.org/10.1016/j.scienta.2016.11.012
  • Machado R M A & Serralheiro R P (2017). Soil salinity: effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae 3(2): 30. https://doi.org/10.3390/horticulturae3020030
  • Madeira A C, Ferreira A, de Varennes A & Vieira M I (2003). SPAD meter versus tristimulus colorimeter to estimate chlorophyll content and leaf color in sweet pepper. Communications in Soil Science and Plant Analysis 34(Nos. 17 &18): 2461-2470. https://doi.org/10.1081/CSS- 120024779
  • Maršič N K, Mikulič-Petkovšek M & Štampar F (2014). Grafting influences phenolic profile and carpometric traits of fruits of greenhouse grown eggplant (Solanum melongena L.). Journal of Agricultural and Food Chemistry 62(43): 10504–10514. https://doi.org/10.1021/jf503338m
  • Meena R P, Karnam V, Sujatha H T, Tripathi S C & Singh G (2024). Practical approaches to enhance water productivity at the farm level in Asia: A review. Irrigation and Drainage 73(2): 770–793. https://doi.org/10.1002/ird.2891
  • Mekonnen M M & Gerbens-Leenes W (2020). The water footprint of global food production. Water 12: 2696. https://doi.org/10.3390/w12102696
  • Miceli A, Sabatino L, Moncada A, Vetrano F & D’Anna F (2014). Nursery and field evaluation of eggplant grafted onto unrooted cuttings of Solanum torvum Sw. Scientia Horticulturae 178: 203–210. http://dx.doi.org/10.1016/j.scienta.2014.08.025
  • Mohawesh O (2016). Utilizing deficit irrigation to enhance growth performance and water-use efficiency of eggplant in arid environments. Journal of Agricultural Science and Technology 18(1): 265–276.
  • Moncada A, Miceli A, Vetrano F, Mineo V, Planeta D & D’Anna F (2013). Effect of grafting on yield and quality of eggplant (Solanum melongena L.). Scientia Horticulturae 149: 108–114. https://doi.org/10.1016/j.scienta.2012.06.015
  • Mokabel S, Olama Z, Ali S & El-Dakak R (2022). The role of plant growth promoting rhizosphere microbiome as alternative biofertilizer in boosting solanum melongena l. adaptation to salinity stress. Plants 11(5): 659. https://doi.org/10.3390/plants11050659
  • Okiror P, Lejju J B, Bahati J, Rugunda G K, Sebuuwufu C I, Mulindwa P & Ocan J J (2017). Suitability of Kabanyolo soils for fruit and vegetable production. Open Journal of Soil Science 7(2): 19–33. https://doi.org/10.4236/ojss.2017.72002
  • Ouma G, Wanyama J, Kabenge I, Jjagwe J, Diana M & Muyonga J (2024). Assessing the effect of deficit drip irrigation regimes on crop performance of eggplant. Scientia Horticulturae 325: 112648. https://doi.org/10.1016/j.scienta.2023.112648
  • Öktem A, Simsek M & Oktem A G (2003). Deficit irrigation effects on sweet corn (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region: I. Water-yield relationship. Agricultural Water Management 61(1): 63–74.
  • Rodan M A, Hassandokht M R, Sadeghzadeh-Ahari D & Mousavi A (2020). Mitigation of drought stress in eggplant by date straw and plastic mulches. Journal of the Saudi Society of Agricultural Sciences 19(7): 492–498. https://doi.org/10.1016/j.jssas.2020.09.006
  • Sabatino L, Iapichino G, Maggio A, D’anna E, Bruno M & D’Anna F (2016). Grafting affects yield and phenolic profile of Solanum melongena L. Landraces. Journal of Integrative Agriculture 15(5): 1017–1024. https://doi.org/10.1016/S2095-3119(15)61323-5
  • Sabatino L, Iapichino G, D’Anna F, Palazzolo E, Mennella G & Rotino G L (2018). Hybrids and allied species as potential rootstocks for eggplant: Effect of grafting on vigour, yield and overall fruit quality traits. Scientia Horticulturae 228: 81–90. http://dx.doi.org/10.1016/j.scienta.2017.10.020
  • Sarı M, Aksoy T, Köseoğlu T, Kaplan M, Kılıç Ş & Pilanalı N (1993). Akdeniz Üniversitesi yerleşim alanının detaylı toprak etüdü ve ideal arazi kullanım planlaması. (in Turkish) Akdeniz Üniversitesi Yayınları, Antalya, 145 ss.
  • Semida W, Abdelkhalik A, Mohamed G, El-Mageed T, El-Mageed S, Rady M & Ali E (2021). Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants 10(2): 421. https://doi.org/ 10.3390/plants10020421
  • Sikka A K, Islam A & Rao K V (2018). Climate-smart land and water management for sustainable agriculture. Irrigation and Drainage 67(1): 72-81. https://doi.org/10.1002/ird.2162
  • Singh G (2016). Climate change and food security in India: Challenges and opportunities. Irrigation and Drainage 65): 5–10. https://doi.org/10.1002/ird.2038
  • Siomos A S, Papadopoulou P P, Niklis N D & Dogras C C (2002). Quality of Romaine and leaf lettuce at harvest and during storage. ISHS Acta Horticulturae 579: II Balkan Symposium on Vegetables and Potatoes, Acta Horticulturae 579: 641-646. DOI:10.17660/ActaHortic.2002.579.113
  • Sonawane A V & Shrivastava P K (2022). Partial root zone drying method of irrigation: A review. Irrigation and Drainage 71(3): 574–588. https:// doi.org/10.1002/ird.2686
  • Stewart J I, Cuenca R H, Pruitt W O, Hagan R M & Tosso J (1977). Determination and utilization of water production functions for principal California crops. W-67 CA Contributing Project Report, University of California, Davis, USA.
  • Topcu S, Kirda C, Dasgan Y, Kaman H, Cetin M, Yazici A & Bacon M A (2007). Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. Europ. J. Agronomy 26: 64–70. doi:10.1016/j.eja.2006.08.004
  • TUIK (2024). Plant Production Statistics. Turkish Statistical Institute, https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri- 2023-49535.
  • Ungureanu N, Vl˘aduț V & Voicu G (2020). Water scarcity and wastewater reuse in crop irrigation. Sustainability 12: 9055. https://doi.org/10.3390/su12219055
  • Wakchaure G C, Minhas P S, Meena K K, Kumar S & Rane J (2020). Effect of plant growth regulators and deficit irrigation on canopy traits, yield, water productivity and fruit quality of eggplant (Solanum melongena L.) grown in the water scarce environment. Journal of Environmental Management 262: 110320. https://doi.org/10.1016/j.jenvman.2020.110320
  • Wang B, Bao R, Yan H, Zheng H, Wu J, Zhang C & Wang G (2024). Study of evapotranspiration and crop coefficients for eggplant in a Venlo- type greenhouse in South China. Irrigation and Drainage 1–13. https://doi.org/10.1002/ird.3025
  • Zafar U, Arshad M, Masud Cheema M J & Ahmad R (2020). Sensor based drip irrigation to enhance crop yield and water productivity in semi- arid climatic region of Pakistan. Pakistan Journal of Agricultural Sciences 57(5): 1293–1301. https://doi.org/10.21162/ PAKJAS/20.83
Year 2025, Volume: 31 Issue: 2, 516 - 531, 25.03.2025
https://doi.org/10.15832/ankutbd.1560489

Abstract

Project Number

FBA-2018-3218

References

  • Abd El-Wahed M H & Ali E A (2013). Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit. Agricultural Water Management 120: 64–71
  • Al-Hadidi L & Sweity A (2022). Effect of deficit irrigation using treated wastewater on eggplant yields, water productivity, fruit quality and mineral contents. Russian Agricultural Sciences 48(2): 63–73. https://doi.org/10.3103/S1068367422020112
  • Al Ali M, Gençoğlan C & Gençoğlan S (2018). The effect of irrigation water amount on water-yield relationships of eggplant. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi. 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi, Special Issue: 385-393
  • Al-Harbi A R, Al-Omran A M & Alharbi K (2018). Grafting improves cucumber water stress tolerance in Saudi Arabia. Saudi Journal of Biological Sciences 25(2): 298–304. https://doi.org/10.1016/j.sjbs.2017.10.025
  • Anonymous (2000). Long-term climate data for Antalya province. Turkish State Meteorological Service, Antalya.
  • Anonymous (2022). Ministry of Agriculture and Forestry General Directorate of State Hydraulic Works (DSI). https://cevreselgostergeler.csb.gov.tr/su-kullanimi-i-85738.
  • Ayas S (2017). The effects of irrigation regimes on the yield and water use of eggplant (Solanum melongena L.). Soil Water Journal 6(2): 49- 58. https://doi.org/10.21657/topraksu.339835
  • Bhatnagar V & Poonia R C (2018). Design of prototype model for irrigation based decision support system. Journal of Informaton and Optmzaton Scences 39(7): 1607–1612. https://doi.org/ 10.1080/02522667.2018.1507763
  • Bozkurt Çolak Y, Yazar A & Çolak İ (2017). Effect of different deficit irrigation strategies on subsurface drip irrigated eggplant yields and yield components under Cukurova Condition. Alatarım 16(1): 1-10
  • Bozkurt Çolak Y, Yazar A, Gönen E & Eroğlu E Ç (2018). Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns. Agricultural Water Management 206: 165–175. https://doi.org/10.1016/j.agwat.2018.05.010
  • Bozkurt Çolak Y (2019). Effects of irrigation frequency and level on yield and stomatal resistance of eggplant (Solanum melongena L.) grown in open field irrigated with surface and subsurface drip methods. Applied Ecology and Environmental Research 17(6): 15585–15604. DOI: http://dx.doi.org/10.15666/aeer/1706_1558515604
  • Cantürk A, Cemek B, Taşan M & Taşan S (2023). Effect of deficit irrigation on yield, water productivity, energy indices and economic productivity in eggplant cultivation. Gesunde Pflanzen 75: 1579-1589. https://doi.org/10.1007/s10343-022-00814-z
  • Campi P, Mastrorilli M, Stellacci A M, Modugno F & Palumbo A D (2019). Increasing the effective use of water in green aspara gus through deficit irrigation strategies. Agricultural Water Management 217: 119–130
  • Consentino B B, Rouphael Y, Ntatsi G, De Pasquale C, Iapichino G, D’Anna F, La Bella S & Sabatino L (2022). Agronomic performance and fruit quality in greenhouse grown eggplant are interactively modulated by iodine dosage and grafting. Scientia Horticulturae 295: 110891. https://doi.org/10.1016/j.scienta.2022.110891
  • Darko R O, Yuan S, Kumi F & Quaye F (2019). Effect of deficit irrigation on yield and quality of eggplant. International Journal of Environment, Agriculture and Biotechnology 4(5): 1325–1333. https://dx.doi.org/10.22161/ijeab.45.5
  • Diaz-Perez J C & Eaton T E (2015). Eggplant (Solanum melongena L.) plant growth and fruit yield as affected by drip irrigation rate. HortScience 50(11): 1709–1714. https://doi.org/10.21273/HORTSCI.50.11.1709
  • Doorenbos J & Kassam A H (1979). Yield response to water. FAO Irrigation and Drainage Paper No, 33, Rome, pp 193.
  • Dry P R & Loveys B R (1998). Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Australian Journal of Grape and Wine Research 4: 140–148. https://doi.org/10.1111/j.1755-0238.1998.tb00143.x
  • Dry P, Loveys B, Botting D & Düring H (1995). Effects of partial root-zone drying on grapevine vigour, yield, composition of fruit and use of water. In: Proceedings of the ninth Australian Wine Industry Technical Conference pp. 128–131
  • Ertek A, Şensoy S, Küçükyumuk C & Gedik İ (2006). Determination of plant-pan coefficients for field-grown eggplant (Solanum melongena L.) using class A pan evaporation values. Agricultural Water Management 85(1–2): 58–66. https://doi.org/10.1016/ j.agwat.2006.03.013
  • FAO (2024). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL
  • Gisbert C, Prohens J, Raig´on M D, Stommel J R & Nuez F (2011). Eggplant relatives as sources of variation for developing new rootstocks: effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae 128: 14–22. doi:10.1016/j.scienta.2010.12.007
  • Howladar S M (2018). Potassium humate improves physio-biochemical attributes, defense systems activities and water-use efficiencies of eggplant under partial root-zone drying. Scientia Horticulturae 240: 179–185. https://doi.org/10.1016/j.scienta.2018.06.020
  • Ibrahim A, Wahb-Allah M, Abdel-Razzak H & Alsadon A (2014). Growth, yield, quality and water use efficiency of grafted tomato plants grown in greenhouse under dif ferent irrigation levels. Life Science Journal 11(2): 118–126. doi:10.7537/marslsj110214.17
  • Incrocci L, Thompson R B, Fernandez-Fernandez M D, De Pascale S, Pardossi A, Stanghellini C, Rouphael Y & Gallardo M (2020). Irrigation management of European greenhouse vegetable crops. Agricultural Water Management 242: 106393. https://doi.org/10.1016/j.agwat.2020.106393
  • Kaman H, Özbek Ö & Polat E (2022). Response of greenhouse grown cucumber to partial root zone drying and conventional deficit irrigation. KSU J. Agric Nat. 25(2): 337-347. https://doi.org/10.18016/ ksutarimdoga.vi. 883294
  • Kaman H, Özbek Ö & Polat E (2023a). Determination of the effect of different irrigation regimes on some quality properties of cucumber. Journal of Tekirdag Agricultural Faculty 20(2): 318-333. DOI: 10.33462/jotaf.1093951
  • Kaman H, Gübbük H, Tezcan A, Can M & Özbek Ö (2023b). Water-yield relationship of greenhouse-grown strawberry under limited irrigation. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 51(2): 13235. https://doi.org/10.15835/nbha51213235
  • Kaman H, Gübbük H, Tezcan A, Can M & Özbek Ö (2023c). Yield and quality of strawberry under deficit irrigation and fixed partial root drying regimes. Pakistan Journal of Agricultural Sciences 60(4): 555-563. DOI:10.21162/PAKJAS/23.135
  • Kang S, Hu X, Goodwin I & Jerie P (2002). Soil water distribution, water use, and yield response to partial root zone drying under a shallow groundwater table condition in a pear orchard. Scientia Horticulturae 92(3-4): 277-291. https://doi.org/10.1016/S0304-4238(01)00300-4
  • Kang S, Liang Z, Pan Y, Shi P & Zhang J (2000). Alternate furrow irrigation for maize production in an arid area. Agricultural Water Management 45(3): 267-274. https://doi.org/10.1016/S0378-3774(00)00072-X
  • Kang S, Zhang L, Xiaotao H, Li Z & Jerie P (2001). An improved water use efficiency for hot pepper grown under controlled alternate drip irrigation on partial roots. Scientia Horticulturae 89(4): 257–267. https://doi.org/10.1016/S0304-4238(00)00245-4
  • Karam F, Saliba R, Skaf S, Breidy J, Rouphael Y & Balendonck J (2011). Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes. Agricultural Water Management 98(8): 1307-1316. https://doi.org/10.1016/j.agwat.2011.03.012
  • Khah E M, Katsoulas N, Tchamitchain M & Kittas C (2011). Effect of grafting on eggplant leaf gas exchanges under Mediterranean greenhouse conditions. International Journal of Plant Production 5(2): 121–134. https://doi.org/10.22069/ijpp.2012.726
  • Kirda C, Cetin M, Dasgan Y, Topcu S, Kaman H, Ekici B, Derici M R & Ozguven A I (2004). Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural Water Management 69: 191–201. doi:10.1016/j.agwat.2004.04.008
  • Kirda C, Topcu S, Cetin M, Dasgan H Y, Kaman H, Topaloglu F, Derici M R & Ekici B (2007). Prospects of partial root zone irrigation for increasing irrigation water use efficiency of major crops in the Mediterranean region. Annals of Applied Biology 150: 281-291. doi:10.1111/j.1744-7348.2007.00141.x
  • Kumar R, Berwal M K & Saroj P L (2019). Morphological, physiological, biochemical and molecular facet of drought stress in horticultural crops. International Journal of Bio-resource and Stress Management 10(5): 545-560. DOI: HTTPS://DOI.ORG/10.23910/IJBSM/2019.10.5.2031
  • López-Marín J, Gálvez A, del Amor F M, Albacete A, Fernández J A, Egea-Gilabert C & Pérez-Alfocea F (2017). Selecting vegetative/generative/dwarfing rootstocks for improving fruit yield and quality in water stressed sweet peppers. Scientia Horticulturae 214: 9–17. https://doi.org/10.1016/j.scienta.2016.11.012
  • Machado R M A & Serralheiro R P (2017). Soil salinity: effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae 3(2): 30. https://doi.org/10.3390/horticulturae3020030
  • Madeira A C, Ferreira A, de Varennes A & Vieira M I (2003). SPAD meter versus tristimulus colorimeter to estimate chlorophyll content and leaf color in sweet pepper. Communications in Soil Science and Plant Analysis 34(Nos. 17 &18): 2461-2470. https://doi.org/10.1081/CSS- 120024779
  • Maršič N K, Mikulič-Petkovšek M & Štampar F (2014). Grafting influences phenolic profile and carpometric traits of fruits of greenhouse grown eggplant (Solanum melongena L.). Journal of Agricultural and Food Chemistry 62(43): 10504–10514. https://doi.org/10.1021/jf503338m
  • Meena R P, Karnam V, Sujatha H T, Tripathi S C & Singh G (2024). Practical approaches to enhance water productivity at the farm level in Asia: A review. Irrigation and Drainage 73(2): 770–793. https://doi.org/10.1002/ird.2891
  • Mekonnen M M & Gerbens-Leenes W (2020). The water footprint of global food production. Water 12: 2696. https://doi.org/10.3390/w12102696
  • Miceli A, Sabatino L, Moncada A, Vetrano F & D’Anna F (2014). Nursery and field evaluation of eggplant grafted onto unrooted cuttings of Solanum torvum Sw. Scientia Horticulturae 178: 203–210. http://dx.doi.org/10.1016/j.scienta.2014.08.025
  • Mohawesh O (2016). Utilizing deficit irrigation to enhance growth performance and water-use efficiency of eggplant in arid environments. Journal of Agricultural Science and Technology 18(1): 265–276.
  • Moncada A, Miceli A, Vetrano F, Mineo V, Planeta D & D’Anna F (2013). Effect of grafting on yield and quality of eggplant (Solanum melongena L.). Scientia Horticulturae 149: 108–114. https://doi.org/10.1016/j.scienta.2012.06.015
  • Mokabel S, Olama Z, Ali S & El-Dakak R (2022). The role of plant growth promoting rhizosphere microbiome as alternative biofertilizer in boosting solanum melongena l. adaptation to salinity stress. Plants 11(5): 659. https://doi.org/10.3390/plants11050659
  • Okiror P, Lejju J B, Bahati J, Rugunda G K, Sebuuwufu C I, Mulindwa P & Ocan J J (2017). Suitability of Kabanyolo soils for fruit and vegetable production. Open Journal of Soil Science 7(2): 19–33. https://doi.org/10.4236/ojss.2017.72002
  • Ouma G, Wanyama J, Kabenge I, Jjagwe J, Diana M & Muyonga J (2024). Assessing the effect of deficit drip irrigation regimes on crop performance of eggplant. Scientia Horticulturae 325: 112648. https://doi.org/10.1016/j.scienta.2023.112648
  • Öktem A, Simsek M & Oktem A G (2003). Deficit irrigation effects on sweet corn (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region: I. Water-yield relationship. Agricultural Water Management 61(1): 63–74.
  • Rodan M A, Hassandokht M R, Sadeghzadeh-Ahari D & Mousavi A (2020). Mitigation of drought stress in eggplant by date straw and plastic mulches. Journal of the Saudi Society of Agricultural Sciences 19(7): 492–498. https://doi.org/10.1016/j.jssas.2020.09.006
  • Sabatino L, Iapichino G, Maggio A, D’anna E, Bruno M & D’Anna F (2016). Grafting affects yield and phenolic profile of Solanum melongena L. Landraces. Journal of Integrative Agriculture 15(5): 1017–1024. https://doi.org/10.1016/S2095-3119(15)61323-5
  • Sabatino L, Iapichino G, D’Anna F, Palazzolo E, Mennella G & Rotino G L (2018). Hybrids and allied species as potential rootstocks for eggplant: Effect of grafting on vigour, yield and overall fruit quality traits. Scientia Horticulturae 228: 81–90. http://dx.doi.org/10.1016/j.scienta.2017.10.020
  • Sarı M, Aksoy T, Köseoğlu T, Kaplan M, Kılıç Ş & Pilanalı N (1993). Akdeniz Üniversitesi yerleşim alanının detaylı toprak etüdü ve ideal arazi kullanım planlaması. (in Turkish) Akdeniz Üniversitesi Yayınları, Antalya, 145 ss.
  • Semida W, Abdelkhalik A, Mohamed G, El-Mageed T, El-Mageed S, Rady M & Ali E (2021). Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants 10(2): 421. https://doi.org/ 10.3390/plants10020421
  • Sikka A K, Islam A & Rao K V (2018). Climate-smart land and water management for sustainable agriculture. Irrigation and Drainage 67(1): 72-81. https://doi.org/10.1002/ird.2162
  • Singh G (2016). Climate change and food security in India: Challenges and opportunities. Irrigation and Drainage 65): 5–10. https://doi.org/10.1002/ird.2038
  • Siomos A S, Papadopoulou P P, Niklis N D & Dogras C C (2002). Quality of Romaine and leaf lettuce at harvest and during storage. ISHS Acta Horticulturae 579: II Balkan Symposium on Vegetables and Potatoes, Acta Horticulturae 579: 641-646. DOI:10.17660/ActaHortic.2002.579.113
  • Sonawane A V & Shrivastava P K (2022). Partial root zone drying method of irrigation: A review. Irrigation and Drainage 71(3): 574–588. https:// doi.org/10.1002/ird.2686
  • Stewart J I, Cuenca R H, Pruitt W O, Hagan R M & Tosso J (1977). Determination and utilization of water production functions for principal California crops. W-67 CA Contributing Project Report, University of California, Davis, USA.
  • Topcu S, Kirda C, Dasgan Y, Kaman H, Cetin M, Yazici A & Bacon M A (2007). Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. Europ. J. Agronomy 26: 64–70. doi:10.1016/j.eja.2006.08.004
  • TUIK (2024). Plant Production Statistics. Turkish Statistical Institute, https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri- 2023-49535.
  • Ungureanu N, Vl˘aduț V & Voicu G (2020). Water scarcity and wastewater reuse in crop irrigation. Sustainability 12: 9055. https://doi.org/10.3390/su12219055
  • Wakchaure G C, Minhas P S, Meena K K, Kumar S & Rane J (2020). Effect of plant growth regulators and deficit irrigation on canopy traits, yield, water productivity and fruit quality of eggplant (Solanum melongena L.) grown in the water scarce environment. Journal of Environmental Management 262: 110320. https://doi.org/10.1016/j.jenvman.2020.110320
  • Wang B, Bao R, Yan H, Zheng H, Wu J, Zhang C & Wang G (2024). Study of evapotranspiration and crop coefficients for eggplant in a Venlo- type greenhouse in South China. Irrigation and Drainage 1–13. https://doi.org/10.1002/ird.3025
  • Zafar U, Arshad M, Masud Cheema M J & Ahmad R (2020). Sensor based drip irrigation to enhance crop yield and water productivity in semi- arid climatic region of Pakistan. Pakistan Journal of Agricultural Sciences 57(5): 1293–1301. https://doi.org/10.21162/ PAKJAS/20.83
There are 66 citations in total.

Details

Primary Language English
Subjects Irrigation Systems , Agricultural Water Management
Journal Section Makaleler
Authors

Ahmet Tezcan 0000-0002-1654-8244

Halil Demir 0000-0003-2237-5439

Harun Kaman 0000-0001-9308-3690

Mehmet Can 0000-0002-9531-2570

Project Number FBA-2018-3218
Publication Date March 25, 2025
Submission Date October 3, 2024
Acceptance Date December 13, 2024
Published in Issue Year 2025 Volume: 31 Issue: 2

Cite

APA Tezcan, A., Demir, H., Kaman, H., Can, M. (2025). Yield Response of Greenhouse Grown Grafted Eggplant to Partial Root Drying and Conventional Deficit Irrigation. Journal of Agricultural Sciences, 31(2), 516-531. https://doi.org/10.15832/ankutbd.1560489
AMA Tezcan A, Demir H, Kaman H, Can M. Yield Response of Greenhouse Grown Grafted Eggplant to Partial Root Drying and Conventional Deficit Irrigation. J Agr Sci-Tarim Bili. March 2025;31(2):516-531. doi:10.15832/ankutbd.1560489
Chicago Tezcan, Ahmet, Halil Demir, Harun Kaman, and Mehmet Can. “Yield Response of Greenhouse Grown Grafted Eggplant to Partial Root Drying and Conventional Deficit Irrigation”. Journal of Agricultural Sciences 31, no. 2 (March 2025): 516-31. https://doi.org/10.15832/ankutbd.1560489.
EndNote Tezcan A, Demir H, Kaman H, Can M (March 1, 2025) Yield Response of Greenhouse Grown Grafted Eggplant to Partial Root Drying and Conventional Deficit Irrigation. Journal of Agricultural Sciences 31 2 516–531.
IEEE A. Tezcan, H. Demir, H. Kaman, and M. Can, “Yield Response of Greenhouse Grown Grafted Eggplant to Partial Root Drying and Conventional Deficit Irrigation”, J Agr Sci-Tarim Bili, vol. 31, no. 2, pp. 516–531, 2025, doi: 10.15832/ankutbd.1560489.
ISNAD Tezcan, Ahmet et al. “Yield Response of Greenhouse Grown Grafted Eggplant to Partial Root Drying and Conventional Deficit Irrigation”. Journal of Agricultural Sciences 31/2 (March 2025), 516-531. https://doi.org/10.15832/ankutbd.1560489.
JAMA Tezcan A, Demir H, Kaman H, Can M. Yield Response of Greenhouse Grown Grafted Eggplant to Partial Root Drying and Conventional Deficit Irrigation. J Agr Sci-Tarim Bili. 2025;31:516–531.
MLA Tezcan, Ahmet et al. “Yield Response of Greenhouse Grown Grafted Eggplant to Partial Root Drying and Conventional Deficit Irrigation”. Journal of Agricultural Sciences, vol. 31, no. 2, 2025, pp. 516-31, doi:10.15832/ankutbd.1560489.
Vancouver Tezcan A, Demir H, Kaman H, Can M. Yield Response of Greenhouse Grown Grafted Eggplant to Partial Root Drying and Conventional Deficit Irrigation. J Agr Sci-Tarim Bili. 2025;31(2):516-31.

Journal of Agricultural Sciences is published as open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).